首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase epsilon interacts with the CMG (Cdc45-MCM-GINS) complex by Dpb2p, the non-catalytic subunit of DNA polymerase epsilon. It is postulated that CMG is responsible for targeting of Pol ɛ to the leading strand. We isolated a mutator dpb2-100 allele which encodes the mutant form of Dpb2p. We showed previously that Dpb2-100p has impaired interactions with Pol2p, the catalytic subunit of Pol ɛ. Here, we present that Dpb2-100p has strongly impaired interaction with the Psf1 and Psf3 subunits of the GINS complex. Our in vitro results suggest that while dpb2-100 does not alter Pol ɛ’s biochemical properties including catalytic efficiency, processivity or proofreading activity – it moderately decreases the fidelity of DNA synthesis. As the in vitro results did not explain the strong in vivo mutator effect of the dpb2-100 allele we analyzed the mutation spectrum in vivo. The analysis of the mutation rates in the dpb2-100 mutant indicated an increased participation of the error-prone DNA polymerase zeta in replication. However, even in the absence of Pol ζ activity the presence of the dpb2-100 allele was mutagenic, indicating that a significant part of mutagenesis is Pol ζ-independent. A strong synergistic mutator effect observed for transversions in the triple mutant dpb2-100 pol2-4 rev3Δ as compared to pol2-4 rev3Δ and dpb2-100 rev3Δ suggests that in the presence of the dpb2-100 allele the number of replication errors is enhanced. We hypothesize that in the dpb2-100 strain, where the interaction between Pol ɛ and GINS is weakened, the access of Pol δ to the leading strand may be increased. The increased participation of Pol δ on the leading strand in the dpb2-100 mutant may explain the synergistic mutator effect observed in the dpb2-100 pol3-5DV double mutant.  相似文献   

2.
Escherichia coli DNA polymerase III holoenzyme (HE) is the main replicase responsible for replication of the bacterial chromosome. E. coli contains four additional polymerases, and it is a relevant question whether these might also contribute to chromosomal replication and its fidelity. Here, we have investigated the role of DNA polymerase II (Pol II) (polB gene product). Mismatch repair-defective strains containing the polBex1 allele--encoding a polymerase-proficient but exonucleolytically defective Pol II--displayed a mutator activity for four different chromosomal lac mutational markers. The mutator effect was dependent on the chromosomal orientation of the lacZ gene. The results indicate that Pol II plays a role in chromosomal replication and that its role is not equal in leading- versus lagging-strand replication. In particular, the role of Pol II appeared larger in the lagging strand. When combined with dnaQ or dnaE mutator alleles, polBex1 showed strong, near multiplicative effects. The results fit a model in which Pol II acts as proofreader for HE-produced misinsertion errors. A second role of Pol II is to protect mismatched 3' termini against the mutagenic action of polymerase IV (dinB product). Overall, Pol II may be considered a main player in the polymerase trafficking at the replication fork.  相似文献   

3.
M R Lifsics  E D Lancy  Jr    R Maurer 《Journal of bacteriology》1992,174(21):6965-6973
In Salmonella typhimurium, dnaQ null mutants (encoding the epsilon editing subunit of DNA polymerase III [Pol III]) exhibit a severe growth defect when the genetic background is otherwise wild type. Suppression of the growth defect requires both a mutation affecting the alpha (polymerase) subunit of DNA polymerase III and adequate levels of DNA polymerase I. In the present paper, we report on studies that clarify the nature of the physiological defect imposed by the loss of epsilon and the mechanism of its suppression. Unsuppressed dnaQ mutants exhibited chronic SOS induction, indicating exposure of single-stranded DNA in vivo, most likely as gaps in double-stranded DNA. Suppression of the growth defect was associated with suppression of SOS induction. Thus, Pol I and the mutant Pol III combined to reduce the formation of single-stranded DNA or accelerate its maturation to double-stranded DNA. Studies with mutants in major DNA repair pathways supported the view that the defect in DNA metabolism in dnaQ mutants was at the level of DNA replication rather than of repair. The requirement for Pol I was satisfied by alleles of the gene for Pol I encoding polymerase activity or by rat DNA polymerase beta (which exhibits polymerase activity only). Consequently, normal growth is restored to dnaQ mutants when sufficient polymerase activity is provided and this compensatory polymerase activity can function independently of Pol III. The high level of Pol I polymerase activity may be required to satisfy the increased demand for residual DNA synthesis at regions of single-stranded DNA generated by epsilon-minus pol III. The emphasis on adequate polymerase activity in dnaQ mutants is also observed in the purified alpha subunit containing the suppressor mutation, which exhibits a modestly elevated intrinsic polymerase activity relative to that of wild-type alpha.  相似文献   

4.
In the 1970s, several thermosensitive alleles of dnaE (encoding the alpha-catalytic subunit of pol III) were isolated. Genetic characterization of these dnaE mutants revealed that some are mutator alleles at permissive temperature. We have determined the nucleotide changes of five such temperature sensitive mutator alleles (dnaE9, dnaE74, dnaE486, dnaE511, and dnaE1026) and find that most are single missense mutations. The exception is dnaE1026 which is a compound allele consisting of multiple missense mutations. When the previously characterized mutator alleles were moved into a lexA51(Def) recA730 strain, dnaE486, dnaE1026 and dnaE74 conferred a modest approximately two-six-fold increase in spontaneous mutagenesis when grown at the permissive temperature of 28 degrees C, while dnaE9 and dnaE511 actually resulted in a slight decrease in spontaneous mutagenesis. In isogenic DeltaumuDC derivatives, the level of spontaneous mutagenesis dropped significantly, although in each case, the overall mutator effect conferred by the dnaE allele was relatively larger, with all five dnaE alleles conferring an increased spontaneous mutation rate approximately 5-22-fold over the isogenic dnaE+ DeltaumuDC strain. Interestingly, the temperature sensitivity conferred by each allele varied considerably in the lexA51(Def) recA730 background and in many cases, this phenotype was dependent upon the presence of functional pol V (UmuD'2C). Our data suggest that pol V can compete effectively with the impaired alpha-subunit for a 3' primer terminus and as a result, a large proportion of the phenotypic effects observed with strains carrying missense temperature sensitive mutations in dnaE can, in fact, be attributed to the actions of pol V rather than pol III.  相似文献   

5.
The theta subunit (holE gene product) of Escherichia coli DNA polymerase (Pol) III holoenzyme is a tightly bound component of the polymerase core. Within the core (alpha-epsilon-theta), the alpha and epsilon subunits carry the DNA polymerase and 3' proofreading functions, respectively, while the precise function of theta is unclear. holE homologs are present in genomes of other enterobacteriae, suggestive of a conserved function. Putative homologs have also been found in the genomes of bacteriophage P1 and of certain conjugative plasmids. The presence of these homologs is of interest, because these genomes are fully dependent on the host replication machinery and contribute few, if any, replication factors themselves. To study the role of these theta homologs, we have constructed an E. coli strain in which holE is replaced by the P1 homolog, hot. We show that hot is capable of substituting for holE when it is assayed for its antimutagenic action on the proofreading-impaired dnaQ49 mutator, which carries a temperature-sensitive epsilon subunit. The ability of hot to substitute for holE was also observed with other, although not all, dnaQ mutator alleles tested. The data suggest that the P1 hot gene product can substitute for the theta subunit and is likely incorporated in the Pol III complex. We also show that overexpression of either theta or Hot further suppresses the dnaQ49 mutator phenotype. This suggests that the complexing of dnaQ49-epsilon with theta is rate limiting for its ability to proofread DNA replication errors. The possible role of hot for bacteriophage P1 is discussed.  相似文献   

6.
The Escherichia coli dnaQ gene encodes the 3'-->5' exonucleolytic proofreading (epsilon) subunit of DNA polymerase III (Pol III). Genetic analysis of dnaQ mutants has suggested that epsilon might consist of two domains, an N-terminal domain containing the exonuclease and a C-terminal domain essential for binding the polymerase (alpha) subunit. We have created truncated forms of dnaQ resulting in epsilon subunits that contain either the N-terminal or the C-terminal domain. Using the yeast two-hybrid system, we analyzed the interactions of the single-domain epsilon subunits with the alpha and theta subunits of the Pol III core. The DnaQ991 protein, consisting of the N-terminal 186 amino acids, was defective in binding to the alpha subunit while retaining normal binding to the theta subunit. In contrast, the NDelta186 protein, consisting of the C-terminal 57 amino acids, exhibited normal binding to the alpha subunit but was defective in binding to the theta subunit. A strain carrying the dnaQ991 allele exhibited a strong, recessive mutator phenotype, as expected from a defective alpha binding mutant. The data are consistent with the existence of two functional domains in epsilon, with the C-terminal domain responsible for polymerase binding.  相似文献   

7.
dnaQ (mutD) encodes the editing exonuclease subunit (epsilon) of DNA polymerase III. Previously described mutations in dnaQ include dominant and recessive mutator alleles as well as leaky temperature-sensitive alleles. We describe the properties of strains bearing null mutations (deletion-substitution alleles) of this gene. Null mutants exhibited a growth defect as well as elevated spontaneous mutation. As a consequence of the poor growth of dnaQ mutants and their high mutation rate, these strains were replaced within single colonies by derivatives carrying an extragenic suppressor mutation that compensated the growth defect but apparently not the mutator effect. Sixteen independently derived suppressors mapped in the vicinity of dnaE, the gene for the polymerization subunit (alpha) of DNA polymerase III, and one suppressor that was sequenced encoded an altered alpha polypeptide. Partially purified DNA polymerase III containing this altered alpha subunit was active in polymerization assays. In addition to their dependence on a suppressor mutation affecting alpha, dnaQ mutants strictly required DNA polymerase I for viability. We argue from these data that in the absence of epsilon, DNA replication falters unless secondary mechanisms, including genetically coded alteration in the intrinsic replication capacity of alpha and increased use of DNA polymerase I, come into play. Thus, epsilon plays a role in DNA replication distinct from its known role in controlling spontaneous mutation frequency.  相似文献   

8.
9.
McHenry CS 《EMBO reports》2011,12(5):408-414
Studies using Escherichia coli DNA polymerase (Pol) III as the prototype for bacterial DNA replication have suggested that--in contrast to eukaryotes--one replicase performs all of the main functions at the replication fork. However, recent studies have revealed that replication in other bacteria requires two forms of Pol III, one of which seems to extend RNA primers by only a few nucleotides before transferring the product to the other polymerase--an arrangement analogous to that in eukaryotes. Yet another group of bacteria encode a second Pol III (ImuC), which apparently replaces a Pol Y-type polymerase (Pol V) that is required for induced mutagenesis in E. coli. A complete understanding of complex bacterial replicases will allow the simultaneous biochemical screening of all their components and, thus, the identification of new antibacterial compounds.  相似文献   

10.
Summary Epsilon, a fidelity subunit of Escherichia coli DNA Polymerase III, is encoded by dnaQ +. dnaQ49 is a recessive allele that confers temperature-sensitive and saltsuppressible phenotypes for both replication fidelity and viability. SOS mutagenesis in E. coli is regulated by LexA and requires activated RecA (RecA*) and the products of the umuDC operon. dnaQ49 strains with various recA, lexA and umuDC alleles were constructed to determine if activities induced as part of the SOS response influence epsilon activity. We found: (1) both UmuDC and RecA* independently enhance the dnaQ49 mutator phenotype, and (2) expression of RecA* activity in the absence of UmuDC function increases the temperature sensitivity for viability of dnaQ49. These results support the hypothesis that RecA and one or both of the UmuDC proteins interact with the replication complex during SOS mutagenesis.  相似文献   

11.
The Escherichia coli mutator mutD5 is a conditional mutator whose strength is moderate when the strain is growing in minimal medium but very strong when it is growing in rich medium. The primary defect of this strain resides in the dnaQ gene, which encodes the epsilon (exonucleolytic proofreading) subunit of the DNA polymerase III holoenzyme. In one of our mutD5 strains we discovered a mutation that suppressed the mutability of mutD5. Interestingly, the level of suppression was strong in minimal medium but weak in rich medium. The mutation was localized to the dnaE gene, which encodes the alpha (polymerase) subunit of the DNA polymerase III holoenzyme. This mutation, termed dnaE910, also conferred improved growth of the mutD5 strain and caused increased temperature sensitivity in both wild-type and dnaQ49 backgrounds. The reduction in mutator strength by dnaE910 was also observed when this allele was placed in a mutL, a mutT, or a dnaQ49 background. The results suggest that dnaE910 encodes an antimutator DNA polymerase whose effect might be mediated by improved insertion fidelity or by increased proofreading via its effect on the exonuclease activity.  相似文献   

12.
In addition to replicative DNA polymerases, cells contain specialized DNA polymerases involved in processes such as lesion tolerance, mutagenesis and immunoglobulin diversity. In Escherichia coli, DNA polymerase V (Pol V), encoded by the umuDC locus, is involved in translesion synthesis (TLS) and mutagenesis. Genetic studies have established that mutagenesis requires both UmuC and a proteolytic product of UmuD (UmuD'). In addition, RecA protein and the replication processivity factor, the beta-clamp, were genetically found to be essential co-factors for mutagenesis. Here, we have reconstituted Pol V-mediated bypass of three common replication-blocking lesions, namely the two major UV-induced lesions and a guanine adduct formed by a chemical carcinogen (G-AAF) under conditions that fulfil these in vivo requirements. Two co-factors are essential for efficient Pol V-mediated lesion bypass: (i) a DNA substrate onto which the beta-clamp is stably loaded; and (ii) an extended single-stranded RecA/ATP filament assembled downstream from the lesion site. For efficient bypass, Pol V needs to interact simultaneously with the beta-clamp and the 3' tip of the RecA filament. Formation of an extended RecA/ATP filament and stable loading of the beta-clamp are best achieved on long single-stranded circular DNA templates. In contrast to previously published data, the single-stranded DNA-binding protein (SSB) is not absolutely required for Pol V-mediated lesion bypass provided ATP, instead of ATPgammaS, activates the RecA filament. Further discrepancies with the existing literature are explainable by the use of either inadequate DNA substrates or a UmuC fusion protein instead of native Pol V.  相似文献   

13.
DNA polymerases (pols) catalyse the synthesis of DNA. This reaction requires a primer-template DNA in order to grow from the 3'OH end of the primer along the template. On the other hand terminal deoxyribonucleotidyl transferase (TdT) catalyses the addition of nucleotides at the 3'OH end of a DNA strand, without the need of a template. Pol lambda and pol micro are ubiquitous enzymes, possess both DNA polymerase and terminal deoxyribonucleotidyl transferase activities and belong to pol X family, together with pol beta and TdT. Here we show that pol lambda, pol micro and TdT, all possess the ability to synthesise in vitro short fragments of DNA in the absence of a primer-template or even a primer or a template in the reaction. The DNA synthesised de novo by pol lambda, pol micro and TdT appears to have an unusual structure. Furthermore we found that the amino acid Phe506 of pol lambda is essential for the de novo synthesis. This novel catalytic activity might be related to the proposed functions of these three pol X family members in DNA repair and DNA recombination.  相似文献   

14.
Most potent mutators heretofore detected in Escherichia coli are associated with defects in epsilon subunit of DNA polymerase III, encoded by the dnaQ gene. To elucidate the role of the alpha subunit, the catalytic subunit of the polymerase, in maintaining the high fidelity of DNA replication, we isolated a mutator mutant, the mutation (dnaE173) of which resides on the dnaE gene, encoding the alpha subunit. The dnaE173 mutant was unable to grow in salt-free L broth at temperatures exceeding 44.5 degrees C and exhibited an increased frequency of spontaneous mutations, 1,000 to 10,000-fold the wild type level, at permissive temperatures. The mutator effect of dnaE173 mutation is dominant over the wild type allele. These phenotypes are caused by a single base substitution, resulting in one amino acid change, Glu612 (GAA)----Lys(AAA), in the alpha subunit molecule. DNA polymerase III purified from the dnaE173 mutant contained both alpha and epsilon subunits, in a normal molar ratio. We found no differences between wild type and mutant polymerases in the Vmax, thermolabilities, and salt sensitivities. However, the apparent Km for the substrate nucleotide of the mutant polymerase was 1/6 of that determined with the wild type polymerase. Although the mutant polymerase retained a normal level of 3'----5' exonuclease activity, the proofreading capacity determined by "turnover assay" was significantly lower in the mutant polymerase, as compared with findings in the normal enzyme. It seems likely that the enhanced mutability in the dnaE173 strain results from, at least in part, a defect in the editing function of DNA polymerase III, and further suggests that a portion of the alpha subunit in which the amino acid change resides may be important for the proper setting of the two subunits at the replication fork so as to facilitate efficient editing during the DNA replication.  相似文献   

15.
Summary The dnaQ (mutD) gene product which encodes the -subunit of the DNA polymerase III holoenzyme has a central role in controlling the fidelity of DNA replication because both mutD5 and dnaQ49 mutations severely decrease the 3–5 exonucleolytic editing capacity.It is shown in this paper that more than 95% of all anaQ49-induced base pair substitutions are transversions of the types G:C-T:A and A:T-T:A. Not only is this unusual mutational specificity precisely that observed recently for a number of potent carcinogens such as benzo(a) pyrene diolepoxide (BPDE) and aflatoxin B1 (AFB1), which are dependent on the SOS system to mutagenize bacteria, but it is also seen for the constitutively expressed SOS mutator activity in E. coli tif-1 strains as well as for the SOS mutator activity mediated gap filling of apurinic sites. Because the G:C-T:A and A:T-T:A transversions can either result from the insertion of an adenine across from apurinic sites or arise due to the incorporation of syn-adenine opposite a purine base, we postulate that the DNA polymerase III holoenzyme also has a reduced discrimination ability in a dnaQ49 background.The introduction of a lexA (Ind-) allele, which prevents the expression of SOS functions, led to a significant reduction in the dnaQ49-caused mutator effect.Both, the mutational specificity observed and the partial lexA + dependence of the mutator effect provoke a reanalysis of the hypothesis that the DNA polymerase III holoenzyme can be converted into the postulated but until now unidentified SOS polymerase.  相似文献   

16.
Many mutator genes have been characterized in E. coli, but the realization that mutA, the most recent mutator pathway described, encodes for a missense suppressor glycine tRNA caused a real surprise. The connection between expression of mutA and a 10 times increase in the spontaneous mutation rate is not readily explainable. The first attempt to describe the mechanism of action suggested a direct mistranslation of one subunit of polymerase III (PolIII) and the ideal candidate was the epsilon subunit carrying the 3'-->5' exonuclease activity. This subunit increases PolIII accuracy about 100 times. However, such direct mistranslation of epsilon was later ruled out when it became clear that all mutA cells express an error-prone form of PolIII. This result could not be reconciled with the very low level of mistranslation (1%) caused by mutA. But there is no need to invoke amino acid misincorporation in epsilon to destroy its activity. On the contrary, I suggest a new way to regulate epsilon amount, based on the reinterpretation of the mutA pathway through the new and puzzling observation that several tRNAs (including mutA which encodes for a glycine missense suppressor tRNA) are complementary to the 5' end of dnaQ mRNA. Accordingly, I propose that uncharged tRNAs can act as antisense RNAs, decreasing translation of dnaQ and possibly other genes. This could represent a new regulatory function for tRNAs and of course gives a direct and unrecognized link between starvation and mutation rate.  相似文献   

17.
The dinB gene of Escherichia coli is known to be involved in the untargeted mutagenesis of lambda phage. Recently, we have demonstrated that this damage-inducible and SOS-controlled gene encodes a novel DNA polymerase, DNA Pol IV, which is able to dramatically increase the untargeted mutagenesis of F' plasmid. At the amino acid level, DNA Pol IV shares sequence homologies with E. coli UmuC (DNA Pol V), Rev1p, and Rad30p (DNA polymerase eta) of Saccharomyces cerevisiae and human Rad30A (XPV) proteins, all of which are involved in translesion DNA synthesis. To better characterize the Pol IV-dependent untargeted mutagenesis, i.e., the DNA Pol IV mutator activity, we analyzed the genetic requirements of this activity and determined the forward mutation spectrum generated by this protein within the cII gene of lambda phage. The results indicated that the DNA Pol IV mutator activity is independent of polA, polB, recA, umuDC, uvrA, and mutS functions. The analysis of more than 300 independent mutations obtained in the wild-type or mutS background revealed that the mutator activity clearly promotes single-nucleotide substitutions as well as one-base deletions in the ratio of about 1:2. The base changes were strikingly biased for substitutions toward G:C base pairs, and about 70% of them occurred in 5'-GX-3' sequences, where X represents the base (T, A, or C) that is mutated to G. These results are discussed with respect to the recently described biochemical characteristics of DNA Pol IV.  相似文献   

18.
The Escherichia coli dnaX36 mutant displays a mutator effect, reflecting a fidelity function of the dnaX-encoded τ subunit of the DNA polymerase III (Pol III) holoenzyme. We have shown that this fidelity function (i) applies to both leading- and lagging-strand synthesis, (ii) is independent of Pol IV, and (iii) is limited by Pol II.  相似文献   

19.
Chromosome replication in Escherichia coli is accomplished by the multimeric enzyme DNA polymerase III; the relevance, in vivo, of the epsilon subunit (encoded by dnaQ) for processivity and fidelity of DNA polymerase III has been evaluated. To this aim, dnaQ has been conditionally silenced by means of in vivo expression of different antisense RNAs. Unexpectedly, the presence of the Shine-Dalgarno sequence is essential for the effectiveness of antisense constructs. Silencing of dnaQ induces a severe decrease in growth rate not paralleled by high mutation frequencies, suggesting that the epsilon subunit primarily affects the processivity of DNA polymerase III.  相似文献   

20.
Summary The nucleotide sequences of the recessivednaQ49 and the dominantmutD5 mutator were determined. ThednaQ49 mutator has a single base substitution in thednaQ gene, thus causing one amino acid change,96Val (GTG)→ Gly (GGG), in the DnaQ protein (ε subunit of DNA polymerase III holoenzyme). ThemutD5 mutator possesses two base substitutions in the same gene, resulting in two amino acid changes,73Leu (TTG)→Trp (TGG) and164Ala (GCA)→Val (GTA), which were designated themutD52 andmutD51 mutations, respectively. Construction of chimaeric genes carrying one or two of these mutations revealed: (1) eithermutD51 ormutD52 alone causes the dominant mutator phenotype when present in a multi-copy plasmid; (2)mutD51, but notmutD52, exerts the dominant mutator phenotype when present in a low-copy plasmid; (3) the dominantmutD51 mutator activity is suppressed by thednaQ49 mutation when both mutations are present in the same gene. Based on these findings, we devised a model for the action of these mutators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号