首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Histone deacetylase (HDAC) is an emergent anticancer target, and HR23B is a biomarker for response to HDAC inhibitors. We show here that HR23B has impacts on two documented effects of HDAC inhibitors; HDAC inhibitors cause apoptosis in cells expressing high levels of HR23B, whereas in cells with low level expression, HDAC inhibitor treatment is frequently associated with autophagy. The mechanism responsible involves the interaction of HDAC6 with HR23B, which downregulates HR23B and thereby reduces the level of ubiquitinated substrates targeted to the proteasome, ultimately desensitising cells to apoptosis. Significantly, the ability of HDAC6 to downregulate HR23B occurs independently of its deacetylase activity. An analysis of the HDAC6 interactome identified HSP90 as a key effector of HDAC6 on HR23B levels. Our results define a regulatory mechanism that involves the interplay between HR23B and HDAC6 that influences the biological outcome of HDAC inhibitor treatment.  相似文献   

5.
Histone deacetylase (HDAC) inhibitors are a class of promising anticancer reagents. They are able to induce apoptosis in embryonic carcinoma (EC) cells. However, the underlying mechanism remains poorly understood. Here we show that increased expression of zinc-finger protein regulator of apoptosis and cell-cycle arrest (Zac1) is implicated in HDAC inhibitor-induced apoptosis in F9 and P19 EC cells. By chromatin immunoprecipitation analysis we identified that increased Zac1 expression is mediated by histone acetylation of the Zac1 promoter region. Knockdown of Zac1 inhibited HDAC inhibitor-induced cell apoptosis. Moreover, HDAC inhibitors repressed nuclear factor-κB (NF-κB) activity, and this effect is abrogated by Zac1 knockdown. Consistently, Zac1 overexpression suppressed cellular NF-κB activity. Further investigation showed that Zac1 inhibits NF-κB activity by interacting with the C-terminus of the p65 subunit, which suppresses the phosphorylation of p65 at Ser468 and Ser536 residues. These results indicate that Zac1 is a histone acetylation-regulated suppressor of NF-κB, which is induced and implicated in HDAC inhibitor-mediated EC cell apoptosis.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Many cell types mount elaborate, compensatory responses to stress that enhance survival; however, the intracellular signals that govern these responses are poorly understood. Cardiotrophin-1 (CT-1), a stress-induced cytokine, belongs to the interleukin-6/glycoprotein 130 receptor-coupled cytokine family. CT-1 is released from the heart in response to hypoxic stress, and it protects cardiac myocytes from hypoxia-induced apoptosis, thus establishing a central role for this cytokine in the cardiac stress response. In the present study, CT-1 activated p38 and ERK MAPKs as well as Akt in cultured cardiac myocytes; these three pathways were activated in a parallel manner. CT-1 also induced the degradation of the NF-kappa B cytosolic anchor, I kappa B, as well as the translocation of the p65 subunit of NF-kappa B to the nucleus and increased expression of an NF-kappa B-dependent reporter gene. Inhibitors of the p38, ERK, or Akt pathways each partially reduced CT-1-mediated NF-kappa B activation, as well as the cytoprotective effects of CT-1 against hypoxic stress. Together, the inhibitors completely blocked CT-1-dependent NF-kappa B activation and cytoprotection. A cell-permeable peptide that selectively disrupted NF-kappa B activation also completely inhibited the cytoprotective effects of CT-1. These results indicate that CT-1 signals through p38, ERK, and Akt in a parallel manner to activate NF-kappa B and that NF-kappa B is required for CT-1 to mediate its full cytoprotective effects in cardiac myocytes.  相似文献   

13.
14.
15.
16.
17.
18.
Activation of protein kinase C (PKC) prevents apoptosis in certain cells; however, the mechanisms are largely unknown. Inhibitors of apoptosis (IAP) family members, including NAIP, cIAP-1, cIAP-2, XIAP/hILP, survivin, and BRUCE, block apoptosis by binding and potently inhibiting caspases. Activation of NF-kappa B contributes to cIAP-2 induction; however, the cellular mechanisms regulating cIAP-2 expression have not been entirely defined. In this study, we examined the role of the PKC and NF-kappa B pathways in the regulation of cIAP-2 in human colon cancers. We found that cIAP-2 mRNA levels were markedly increased in human colon cancer cells by treatment with the phorbol ester, phorbol-12-myristate-13-acetate (PMA), or bryostatin 1. Inhibitors of the Ca2+-independent, novel PKC isoforms, but not inhibitors of MAPK, PI3-kinase, or PKA, blocked PMA-stimulated cIAP-2 mRNA expression, suggesting a role of PKC in PMA-mediated cIAP-2 induction. Pretreatment with the PKC delta-selective inhibitor rottlerin or transfection with an antisense PKC delta oligonucleotide inhibited PMA-induced cIAP-2 expression, whereas cotransfection with a PKC delta plasmid induced cIAP-2 promoter activity, which, taken together, identifies a role for PKC delta in cIAP-2 induction. Treatment with the proteasome inhibitor, MG132 or inhibitors of NF-kappa B (e.g. PDTC and gliotoxin), decreased PMA-induced up-regulation of cIAP-2. PMA-induced NF-kappa B activation was blocked by either GF109203x, MG132, PDTC, or gliotoxin. Moreover, overexpression of PKC delta-induced cIAP-2 promoter activity and increased NF-kappa B transactivation, suggesting regulation of cIAP-2 expression by a PKC delta/NF-kappa B pathway. In conclusion, our findings demonstrate a role for a PKC/NF-kappa B-dependent pathway in the regulation of cIAP-2 expression in human colon cancer cells. These data suggest a novel mechanism for the anti-apoptotic function mediated by the PKC delta/NF-kappa B/cIAP-2 pathway in certain cancers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号