首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have found that pituitary adenylate cyclase-activating polypeptide (PACAP) employed at the physiological concentrations induces the differentiation of mouse neural stem cells into astrocytes. The differentiation process was not affected by cAMP analogues such as dibutylic cAMP (db-cAMP) or 8Br-cAMP or by the specific competitive inhibitor of protein kinase A, Rp-adenosine-3',5'-cyclic monophosphothioate triethylamine salt (Rp-cAMP). Expression of the PACAP receptor (PAC1) in neural stem cells was detected by both RT-PCR and immunoblot using an affinity-purified antibody. The PACAP selective antagonist, PACAP(6-38), had an inhibitory effect on the PACAP-induced differentiation of neural stem cells into astrocytes. These results indicate that PACAP acts on the PAC1 receptor on the plasma membrane of mouse neural stem cells, with the signal then transmitted intracellularly via a PAC1-coupled G protein, does not involve Gs. This signaling mechanism may thus play a crucial role in the differentiation of neural stem cells into astrocytes.  相似文献   

2.
3.
The intracellular signaling pathways mediating the neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in human neuroblastoma SH-SY5Y cells. Previously, we showed that SH-SY5Y cells express the PAC(1) and VIP/PACAP receptor type 2 (VPAC(2)) receptors, and that the robust cAMP production in response to PACAP and vasoactive intestinal peptide (VIP) was mediated by PAC(1) receptors (Lutz et al. 2006). Here, we investigated the ability of PACAP-38 to differentiate SH-SY5Y cells by measuring morphological changes and the expression of neuronal markers. PACAP-38 caused a concentration-dependent increase in the number of neurite-bearing cells and an up-regulation in the expression of the neuronal proteins Bcl-2, growth-associated protein-43 (GAP-43) and choline acetyltransferase: VIP was less effective than PACAP-38 and the VPAC(2) receptor-specific agonist, Ro 25-1553, had no effect. The effects of PACAP-38 and VIP were blocked by the PAC(1) receptor antagonist, PACAP6-38. As observed with PACAP-38, the adenylyl cyclase activator, forskolin, also induced an increase in the number of neurite-bearing cells and an up-regulation in the expression of Bcl-2 and GAP-43. PACAP-induced differentiation was prevented by the adenylyl cyclase inhibitor, 2',5'-dideoxyadenosine (DDA), but not the protein kinase A (PKA) inhibitor, H89, or by siRNA-mediated knock-down of the PKA catalytic subunit. PACAP-38 and forskolin stimulated the activation of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAP; p38 MAP kinase) and c-Jun N-terminal kinase (JNK). PACAP-induced neuritogenesis was blocked by the MEK1 inhibitor PD98059 and partially by the p38 MAP kinase inhibitor SB203580. Activation of exchange protein directly activated by cAMP (Epac) partially mimicked the effects of PACAP-38, and led to the phosphorylation of ERK but not p38 MAP kinase. These results provide evidence that the neurotrophic effects of PACAP-38 on human SH-SY5Y neuroblastoma cells are mediated by the PAC(1) receptor through a cAMP-dependent but PKA-independent mechanism, and furthermore suggest that this involves Epac-dependent activation of ERK as well as activation of the p38 MAP kinase signaling pathway.  相似文献   

4.
Oxidative stress, associated with a variety of disorders including neurodegenerative diseases, results from accumulation of reactive oxygen species (ROS). Oxidative stress is not only responsible for neuron apoptosis, but can also provoke astroglial cell death. Numerous studies indicate that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuron survival, but nothing is known regarding the action of PACAP on astroglial cell survival. Thus, the purpose of the present study was to investigate the potential glioprotective effect of PACAP on H(2)O(2)-induced astrocyte death. Pre-treatment of cultured rat astrocytes with nanomolar concentrations of PACAP prevented cell death provoked by H(2)O(2) (300 μM), whereas vasoactive intestinal polypeptide was devoid of protective activity. The effect of PACAP on astroglial cell survival was abolished by the type 1 PACAP receptor antagonist, PACAP6-38. The protective action of PACAP was blocked by the protein kinase A inhibitor H89, the protein kinase C inhibitor chelerythrine and the mitogen-activated protein (MAP)-kinase kinase (MEK) inhibitor U0126. PACAP stimulated glutathione formation, and blocked H(2)O(2)-evoked ROS accumulation and glutathione content reduction. In addition, PACAP prevented the decrease of mitochondrial activity and caspase 3 activation induced by H(2)O(2). Taken together, these data indicate for the first time that PACAP, acting through type 1 PACAP receptor, exerts a potent protective effect against oxidative stress-induced astrocyte death. The anti-apoptotic activity of PACAP on astrocytes is mediated through the protein kinase A, protein kinase C and MAPK transduction pathways, and can be accounted for by inhibition of ROS-induced mitochondrial dysfunctions and caspase 3 activation.  相似文献   

5.
6.
7.
Wang G  Qi C  Fan GH  Zhou HY  Chen SD 《FEBS letters》2005,579(18):4005-4011
In vivo and in vitro studies have suggested a neuroprotective role for Pituitary adenylate cyclase activating polypeptide (PACAP) against neuronal insults. Here, we showed that PACAP27 protects against neurotoxicity induced by rotenone, a mitochondrial complex I inhibitor that has been implicated in the pathogenesis of Parkinson's disease (PD). The neuroprotective effect of PACAP27 was dose-dependent and blocked by its specific receptor antagonist, PACAP6-27. The effects of PACAP27 on rotenone-induced cell death were mimicked by dibutyryl-cAMP (db-cAMP), forskolin and prevented by the PKA inhibitor H89, the ERK inhibitor PD98059 and the p38 inhibitor SB203580. PACAP27 administration blocked rotenone-induced increases in the level of caspase-3-like activity, whereas could not restore mitochondrial activity damaged by rotenone. Thus, our results demonstrate that PACAP27 has a neuroprotective role against rotenone-induced neurotoxicity in neuronal differentiated PC12 cells and the neuroprotective effects of PACAP are associated with activation of MAP kinase pathways by PKA and with inhibition of caspase-3 activity; the signaling mechanism appears to be mediated through mitochondrial-independent pathways.  相似文献   

8.
The pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1) is a heptahelical, G protein-coupled receptor that has been shown to be expressed by non-squamous lung cancer and breast cancer cell lines, and to be coupled to the growth of these tumors. We have previously shown that PACAP and its receptor, PAC1, are expressed in rat colonic tissue. In this study, we used polyclonal antibodies directed against the COOH terminal of PAC1, as well as fluorescently labeled PACAP, Fluor-PACAP, to demonstrate the expression of PAC1 on HCT8 human colonic tumor cells, using FACS analysis and confocal laser scanning microscopy. Similarly, anti-PACAP polyclonal antibodies were used to confirm the expression of PACAP hormone by this cell line. We then investigated the signal transduction properties of PAC1 in these tumor cells. PACAP-38 elevated intracellular cAMP levels in a dose-dependent manner, with a half-maximal (EC(50)) stimulation of approximately 3 nM. In addition, PACAP-38 stimulation caused an increase in cytosolic Ca(2+) concentration [Ca(2+)](i), which was partially inhibited by the PACAP antagonist, PACAP-(6-38). Finally, we studied the potential role of PACAP upon the growth of these tumor cells. We found that PACAP-38, but not VIP, increased the number of viable HCT8 cells, as measured by MTT activity. We also demonstrated that HCT8 cells expressed the Fas receptor (Fas-R/CD95), which was subsequently down-regulated upon activation with PACAP-38, further suggesting a possible role for PACAP in the growth and survival of these tumor cells. These data indicate that HCT8 human colon tumor cells express PAC1 and produce PACAP hormone. Furthermore, PAC1 activation is coupled to adenylate cyclase, increase cytosolic [Ca(2+)](i), and cellular proliferation. Therefore, PACAP is capable of increasing the number of viable cells and regulating Fas-R expression in a human colonic cancer cell line, suggesting that PACAP might play a role in the regulation of colon cancer growth and modulation of T lymphocyte anti-tumoral response via the Fas-R/Fas-L apoptotic pathway.  相似文献   

9.
Hop/STI1 modulates retinal proliferation and cell death independent of PrPC   总被引:2,自引:0,他引:2  
Hop/STI1 is a co-chaperone adaptor protein for Hsp70/Hsp90 complexes. Hop/STI1 is found extracellularly and modulates cell death and differentiation through interaction with the prion protein (PrP(C)). Here, we investigated the expression of hop/STI1 and its role upon cell proliferation and cell death in the developing retina. Hop/STI1 is more expressed in developing rat retina than in the mature tissue. Hop/STI1 blocks retinal cell death in the neuroblastic layer (NBL) in a PrP(C) dependent manner, but failed to protect ganglion cells against axotomy-induced cell death. An antibody raised against hop/STI1 (alpha-STI1) blocked both ganglion cell and NBL cell death independent of PrP(C). cAMP/PKA, ERK, PI3K and PKC signaling pathways were not involved in these effects. Hop/STI1 treatment reduced proliferation, while alpha-STI1 increased proliferation in the developing retina, both independent of PrP(C). We conclude that hop/STI1 can modulate both proliferation and cell death in the developing retina independent of PrP(C).  相似文献   

10.
11.
The retina of newborn rats consists of the ganglion cell layer (GCL), the inner plexiform layer (IPL), the inner nuclear layer (INL) containing amacrine cells and the neuroblastic layer (NBL). In retinal explants, the GCL enters cell death after sectioning of the optic nerve, whereas there is almost no cell death in the NBL. When protein synthesis is inhibited with anisomycin, cell death is blocked in the GCL and induced in the NBL. We tested the roles of nitric oxide (NO) on cell death in the retina in vitro. Either L-arginine, the substrate for NO synthase or the NO donor S:-nitroso-acetylpenicillamine (SNAP) blocked cell death induced by anisomycin in the NBL, but had no effect in the GCL. Sepiapterin, a precursor of the nitric oxide synthase (NOS)-cofactor tetrahydrobiopterin also had a protective effect against anisomycin. The use of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, an inhibitor of soluble form of guanylyl cyclase, showed that anti-apoptotic effect of SNAP is partially mediated by cGMP generated by activation of guanylyl cyclase. NADPH-diaphorase histochemistry stained cells only in the GCL and INL. Thus, the degenerative effect of anisomycin is observed within the NBL, whereas the localization of NOS is restricted to the GCL and INL. The protective effect of both the NO substrate and cofactor upon cell death induced by anisomycin in the NBL, indicates that NO produced by amacrine and ganglion cells is a paracrine modulator of cell death within the retinal tissue.  相似文献   

12.
To study desensitization and glycosylation of the type I pituitary adenylate cyclase-activating polypeptide (PACAP) receptor (PAC(1)R), a hemagglutinin (HA) epitope was inserted within the N-terminal extracellular domain, allowing immunological detection of PAC(1)R both in intact and permeabilized cells. PAC(1)R was tagged without loss of functions in ligand binding and ligand-stimulated cAMP production. In transiently transfected COS-7 cells, PAC(1)R was localized both in the plasma membrane and the cytoplasm around the nucleus. By immunoblot analysis, the immunoreactive bands with relative molecular masses ranging from 45 to 70 kDa were detected in the membrane fractions of PAC(1)R-expressing COS-7 cells. Digestion of the membranes with endoglycosidase F or treatment of the cells with tunicamycin decreased the size of the receptor to major bands of smaller size (approximately 45 and 48 kDa), suggesting that these two forms of PAC(1)R represent core proteins. Flow cytometric analysis indicated that the agonist promoted a disappearance of cell surface receptor. In accordance with this observation, preexposure of cells to PACAP38 induced a desensitization of PAC(1)R to the agonist response, although it did not cause a reduction in PAC(1)R mRNA or protein level and even slightly elevated them. These results suggest that agonist-induced desensitization of PAC(1)R involves the receptor sequestration.  相似文献   

13.
Nakamachi T  Li M  Shioda S  Arimura A 《Peptides》2006,27(7):1859-1864
Activity-dependent neurotrophic protein (ADNP) was discovered as a novel response gene for VIP and has neuroprotective potential. When the VIP paralog, PACAP38 was added to mouse neuron-glia co-cultures, it induced ADNP mRNA expression in a bimodal fashion at subpico- and nanomolar concentrations with greater response at subpicomolar level. The response was attenuated by a PAC1-R antagonist at both concentrations and by a VPAC1-R antagonist at nanomolar concentration only. An IP3/PLC inhibitor attenuated the response at both concentrations of PACAP38, but a MAPK inhibitor had no effect. A PKA inhibitor suppressed the response at nanomolar concentration only. These findings suggest that ADNP expression is mediated through multiple receptors and signaling pathways that are regulated by different concentrations of PACAP.  相似文献   

14.
Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 is a multifunctional anti-inflammatory and anti-apoptotic neuropeptide widely distributed in the nervous system. The objective of this study is to determine whether PACAP38 is neuroprotective against sodium nitroprusside (SNP) and thrombin, two mechanistically distinct neurotoxic agents. Treatment of primary cortical neuronal cultures with 1 mM SNP for 4 h causes neuronal cell death that is significantly reduced by 100 nM PACAP38. PACAP38 down-regulates SNP-induced cell cycle protein (cyclin E) expression and up-regulates p57(KIP2), a cyclin-dependent kinase inhibitor as well as the anti-apoptotic protein Bcl-2. Similarly, neuronal death induced by 100 nM thrombin or the thrombin receptor activating peptide (TRAP 6) is reduced by PACAP38 treatment. Thrombin-stimulated cell cycle protein (cdk4) expression is decreased by PACAP38 while PACAP38 inhibits thrombin-mediated reduction of p57(KIP2). However, the decrease in Bcl-2 evoked by thrombin is not affected by PACAP38. Finally, both SNP and thrombin (or TRAP) increase caspase 3 activity, an effect that is decreased by PACAP38. These data show that PACAP38 supports neuronal survival in vitro suppressing cell cycle progression and enhancing anti-apoptotic proteins. Our results support the possibility that PACAP could be a useful therapeutic agent for reducing neuronal cell death in neurodegenerative diseases.  相似文献   

15.
The protective effect of pituitary adenylate cyclase-activating polypeptide (PACAP) in stroke models is poorly understood. We studied patterns of PACAP, vasoactive intestinal peptide, and the PACAP-selective receptor PAC1 after middle cerebral artery occlusion and neuroprotection by PACAP in cortical cultures exposed to oxygen/glucose deprivation (OGD). Within hours, focal ischemia caused a massive, NMDA receptor (NMDAR)-dependent up-regulation of PACAP in cortical pyramidal cells. PACAP expression dropped below the control level after 2 days and was normalized after 4 days. Vasoactive intestinal peptide expression was regulated oppositely to that of PACAP. PAC1 mRNA showed ubiquitous expression in neurons and astrocytes with minor changes after ischemia. In cultured cortical neurons PACAP27 strongly activated Erk1/2 at low and p38 MAP kinase at higher nanomolar concentrations via PAC1. In astrocyte cultures, effects of PACAP27 on Erk1/2 and p38 were weak. During OGD, neurons showed severely reduced Erk1/2 activity and dephosphorylation of Erk1/2-regulated Ser112 of pro-apoptotic Bad. PACAP27 stimulation counteracted Erk1/2 inactivation and Bad dephosphorylation during short-term OGD but was ineffective after expanded OGD. Consistently, PACAP27 caused MEK-dependent neuroprotection during mild but not severe hypoxic/ischemic stress. While PACAP27 protected neurons at 1–5 nmol/L, full PAC1 activation by 100 nmol/L PACAP exaggerated hypoxic/ischemic damage. PACAP27 stimulation of astrocytes increased the production of Akt-activating factors and conferred ischemic tolerance to neurons. Thus, ischemia-induced PACAP may act via neuronal and astroglial PAC1. PACAP confers protection to ischemic neurons by maintaining Erk1/2 signaling via neuronal PAC1 and by increasing neuroprotective factor production via astroglial PAC1.  相似文献   

16.
Pituitary adenylate cyclase-activating polypeptides (PACAP) have potent regulatory and neurotrophic activities on superior cervical ganglion (SCG) sympathetic neurons with pharmacological profiles consistent for the PACAP-selective PAC(1) receptor. Multiple PAC(1) receptor isoforms are suggested to determine differential peptide potency and receptor coupling to multiple intracellular signaling pathways. The current studies examined rat SCG PAC(1) receptor splice variant expression and coupling to intracellular signaling pathways mediating PACAP-stimulated peptide release. PAC(1) receptor mRNA was localized in over 90% of SCG neurons, which correlated with the cells expressing receptor protein. The neurons expressed the PAC(1)(short)HOP1 receptor but not VIP/PACAP-nonselective VPAC(1) receptors; low VPAC(2) receptor mRNA levels were restricted to ganglionic nonneuronal cells. PACAP27 and PACAP38 potently and efficaciously stimulated both cAMP and inositol phosphate production; inhibition of phospholipase C augmented PACAP-stimulated cAMP production, but inhibition of adenylyl cyclase did not alter stimulated inositol phosphate production. Phospholipase C inhibition blunted neuron peptide release, suggesting that the phosphatidylinositol pathway was a prominent component of the secretory response. These studies demonstrate preferential sympathetic neuron expression of PACAP-selective receptor variants contributing to regulation of autonomic function.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) interacts with three types of PACAP/VIP-receptors. The PAC1-receptor accepts PACAP as a high affinity ligand but not vasoactive intestinal peptide (VIP) similarly binding to VPAC1- and VPAC2-receptors. To identify those amino acids not present in VIP defining PAC1-receptor selectivity of PACAP, radio receptor binding assays on AR4-2J cells were performed. It could be shown that PACAP(1-27) exhibited a distinct and much higher susceptibility to VIP-amino acid substitutions, compared to PACAP(1-38). Positions 4 and 5 seem to be most important for receptor binding of PACAP(1-27), whereas position 13 was identified to be crucial for maximal affinity of PACAP(1-38). PACAP(29-38) extension analogues of VIP revealed a stabilizing effect of the C-terminus of PACAP(1-38) on the optimal peptide conformation. The substitution analogues were also checked for their capacity to stimulate IP3 and cAMP formation in AR4-2J cells. Compared to PACAP(1-27) and PACAP(1-38), most analogues revealed potencies reduced congruously to their lower binding affinities. However, one of the analogues, PACAP(1-27) substituted in position 5, may represent a weak antagonist since this peptide was less potent in inducing second messengers than in label displacement. Our findings indicate that PACAP(1-27) and PACAP(1-38) differ in terms of their requirement of the amino acids in positions 4, 5, 9, 11 and 13 for maximal interaction with the PAC1-receptor.  相似文献   

18.
The effects of pituitary adenylate cyclase activating polypeptide (PACAP) on human lung cancer cell line NCI-1299 mitogen activated protein kinase (MAPK) tyrosine phosphorylation and vascular endothelial cell growth factor (VEGF) expression were investigated. PACAP-27 (100 nM) increased MAPK tyrosine phosphorylation 3-fold, 5 min after addition to NCI-H1299 cells. PACAP caused tyrosine phosphorylation in a concentration-dependent manner being half-maximal at 10 nM PACAP-27. PACAP-27 or PACAP-38 (100 nM) but not PACAP28-38 or VIP caused increased MAPK tyrosine phosphorylation using NCI-H1299 cells. Also, the increase in MAPK tyrosine phosphorylation caused by PACAP-27 was totally inhibited by 10 microM PACAP(6-38), a PAC(1) receptor antagonist or 10 microM PD98059, a MAPKK inhibitor. These results suggest that PAC(1) receptors regulate tyrosine phosphorylation of MAPK in a MAPKK-dependent manner. PACAP-27 (100 nM) caused increased VEGF mRNA in NCI-H1299 cells after 8 h. The increase in VEGF mRNA caused by PACAP-27 was partially inhibited by PACAP(6-38), PD98059 and H-89. Addition of VIP to NCI-H1299 cells caused increased VEGF mRNA, which was totally inhibited by H89, a PKA inhibitor. These results suggest that PAC(1) and VPAC(1) receptors regulate VEGF expression in lung cancer cells.  相似文献   

19.
Dong Y  Tang TS  Lu CL  He C  Dong JB  Huang XY  Sun FZ  Bao X 《生理学报》2000,52(5):402-406
对原代培养7~9d的海马神经元给予谷氨酸处理,24h后,神经元的存活率降低。预先给予垂体腺苷酸环化酶激活肽(PACAP)能显著减少谷氨酸引起的海马神经元死亡。谷氨酸呈剂量依赖性增加海马神经元细胞内钙离子含量,PACAP能抑制谷氨酸引起的海马神经元细胞内钙离子浓度的升高,特异性PACAP Ⅰ型受体拮抗剂PACAP 6-38能完全阻断PACAP减轻谷氨酸所致海马神经元损伤及降低谷氨酸所致神经元细胞内钙  相似文献   

20.
Gui LR  Zhou Y  Zhang BL  Li WB 《生理学报》2003,55(1):42-46
通过MTT方法检测细胞活性 ,同时采用激光共聚焦显微镜技术检测细胞内游离钙离子的瞬时运动 ,研究了垂体腺苷环化酶激活多肽 (pituitaryadenylatecyclaseactivatingpolypeptide 2 7,PACAP2 7)通过调节细胞内钙对抗淀粉样蛋白Aβ2 5 35引起Neuro 2a细胞神经毒性作用的可能机制。结果表明 ,PACAP在一定浓度范围内 (<0 1μmol/L)可提高Neuro 2a细胞增殖能力并对抗Aβ引起的神经毒性 ,此作用可以被PACAP受体竞争性拮抗剂PACAP6 2 7所抑制。 2 5 μmol/LAβ使细胞内钙离子缓慢上升 ,并有一个较长时间的平台期。 0 1μmol/L的PACAP使细胞内钙离子迅速升高后下降 ,10min后回到接近基线水平 ,伴有较长时间的不应期。用PACAP预处理细胞 10min后Aβ引起细胞内钙的慢上升不再出现。推测 ,PACAP受体激活引起瞬时内向钙离子运动 ,而后伴随一个较长时间的不应期 ,可能是一个消除凋亡或阻止凋亡启动的保护机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号