首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The amino-terminal and carboxyl-terminal portions of the 1-34 fragment of parathyroid hormone (PTH) contain the major determinants of receptor activation and receptor binding, respectively. We investigated how the amino-terminal signaling portion of PTH interacts with the receptor by utilizing analogs of the weakly active fragment, rat (r) PTH(1-14)NH(2), and cells transfected with the wild-type human PTH-1 receptor (hP1R-WT) or a truncated PTH-1 receptor which lacked most of the amino-terminal extracellular domain (hP1R-delNt). Of 132 mono-substituted PTH(1-14) analogs, most having substitutions in the (1-9) region were inactive in assays of cAMP formation in LLC-PK1 cells stably expressing hP1R-WT, whereas most having substitutions in the (10-14) region were active. Several substitutions (e.g. Ser(3) --> Ala, Asn(10) --> Ala or Gln, Leu(11) --> Arg, Gly(12) --> Ala, His(14) --> Trp) enhanced activity 2-10-fold. These effects were additive, as [Ala(3),(10,12),Arg(11), Trp(14)] rPTH(1-14)NH(2) was 220-fold more potent than rPTH(1-14)NH(2) (EC(50) = 0.6 +/- 0.1 and 133 +/- 16 micrometer, respectively). Native rPTH(1-11) was inactive, but [Ala(3,10), Arg(11)]rPTH(1-11)NH(2) achieved maximal cAMP stimulation (EC(50) = 17 micrometer). The modified PTH fragments induced cAMP formation with hP1R-delNt in COS-7 cells as potently as they did with hP1R-WT; PTH(1-34) was 6,000-fold weaker with hP1R-delNt than with hP1R-WT. The most potent analog, [Ala(3,10,12),Arg(11), Trp(14)]rPTH(1-14)NH(2), stimulated inositol phosphate production with hP1R-WT. The results show that short NH(2)-terminal peptides of PTH can be optimized for considerable gains in signaling potency through modification of interactions involving the regions of the receptor containing the transmembrane domains and extracellular loops.  相似文献   

2.
The N-terminal portion of parathyroid hormone is critical for PTH-1 receptor (P1R) activation and has been postulated to be alpha-helical when bound to the receptor. We investigated whether substitution of the sterically hindered and helix-promoting amino acid alpha-aminoisobutyric acid (Aib) in N-terminal PTH oligopeptides would improve the capacity of the peptide to activate the P1R. Analysis of the effects of individual Aib substitutions at each position in [Ala(3,12),Gln(10),Har(11),Trp(14)]PTH(1-14)NH(2) ([M]PTH(1-14)) on cAMP-stimulating potency in HKRK-B28 cells revealed that Aib at most positions diminished potency; however, Aib at positions 1 and 3 enhanced potency. Thus [Aib(1,3),M]PTH(1-14) was approximately 100-fold more potent than [M]PTH(1-14) (EC(50) = 1.1 +/- 0.1 and 100 +/- 20 nm, respectively), approximately 100,000-fold more potent than native PTH(1-14), and 2-fold more potent than PTH(1-34). The shorter peptide, [Aib(1,3),M]PTH(1-11), was also fully efficacious and 1,000-fold more potent than [M]PTH(1-11) (EC(50) 4 +/- 1 nm versus 3 +/- 1 microm). In cAMP stimulation assays performed in COS-7 cells expressing P1R-delNt, a receptor that lacks most of the N-terminal extracellular domain, [Aib(1,3),M]PTH(1-14) was 50-fold more potent than [M]PTH(1-14) (EC(50) = 0.7 +/- 0.2 versus 40 +/- 2 nm) and 1,000-fold more potent than PTH(1-34) (EC(50) = 700 nm). [Aib(1,3),M]PTH(1-14), but not PTH(1-34), inhibited the binding of (125)I-[Aib(1,3),Nle(8),Gln(10),Har(11),Ala(12),Trp(14),Arg(19),Tyr(21)]PTH(1-21)NH(2) to hP1R-delNt (IC(50) = 1,600 +/- 200 nm). The Aib(1,3) substitutions in otherwise unmodified PTH(1-34) enhanced potency and binding affinity on hP1R-delNt, but they had no effect for this peptide on hP1R-WT. Circular dichroism spectroscopy demonstrated that the Aib-1,3 substitutions increased helicity in all peptides tested, including PTH(1-34). The overall data thus suggest that the N-terminal residues of PTH are intrinsically disordered but become conformationally constrained, possibly as an alpha-helix, upon interaction with the activation domain of the PTH-1 receptor.  相似文献   

3.
Recent mutagenesis and cross-linking studies suggest that residues in the carboxyl-terminal portion of PTH(1-34) interact with the amino-terminal extracellular domain of the receptor and thereby contribute strongly to binding energy; and that residues in the amino-terminal portion of the ligand interact with the receptor region containing the transmembrane helices and extracellular loops and thereby induce second messenger signaling. We investigated the latter component of this hypothesis using the short amino-terminal fragment PTH(1-14) and a truncated rat PTH-1 receptor (r delta Nt) that lacks most of the amino-terminal extracellular domain. The binding of PTH(1-14) to LLC-PK1 or COS-7 cells transfected with the intact PTH-1 receptor was too weak to detect; however, PTH(1-14) dose-dependently stimulated cAMP formation in these cells over the dose range of 1-100 microM. PTH(1-14) also stimulated cAMP formation in COS-7 cells transiently transfected with r delta Nt, and its potency with this receptor was nearly equal to that seen with the intact receptor. In contrast, PTH(1-34) was approximately 100-fold weaker in potency with r delta Nt than it was with the intact receptor. Alanine scanning of PTH(1-14) revealed that for both the intact and truncated receptors, the 1-9 segment of PTH forms a critical receptor activation domain. Taken together, these results demonstrate that the amino-terminal portion of PTH(1-34) interacts with the juxtamembrane regions of the PTH-1 receptor and that these interactions are sufficient for initiating signal transduction.  相似文献   

4.
Recent mutagenesis and cross-linking studies suggest that three regions of the PTH-1 receptor play important roles in ligand interaction: (i) the extreme NH(2)-terminal region, (ii) the juxtamembrane base of the amino-terminal extracellular domain, and (iii) the third extracellular loop. In this report, we analyzed the second of these segments in the rat PTH-1 receptor (residues 182-190) and its role in functional interaction with short PTH fragment analogs. Twenty-eight singly substituted PTH-1 receptors were transiently transfected into COS-7 cells and shown to be fully expressed by surface antibody binding analysis. Alanine-scanning analysis identified Phe(184), Arg(186), Leu(187), and Ile(190) as important determinants of maximum binding of (125)I-labeled bovine PTH-(1-34) and (125)I-labeled bovine PTH-(3-34) and determinants of responsiveness to the NH(2)-terminal analog, PTH-(1-14) in cAMP stimulation assays. Alanine mutations at these four sites augmented the ability of the COOH-terminal peptide [Glu(22), Trp(23)]PTHrP-(15-36) to inhibit the cAMP response induced by PTH-(1-34). At Phe(184) and Leu(187), hydrophobic substitutions (e.g. Ile, Met, or Leu) preserved PTH-(1-34)-mediated cAMP signaling potency, whereas hydrophilic substitutions (e.g. Asp, Glu, Lys, or Arg) weakened this response by 20-fold or more, as compared with the unsubstituted receptor's response. The results suggest that hydrophobicity at positions occupied by Phe(184) and Leu(187) in the PTH-1 receptor plays an important role in determining functional interaction with the 3-14 portion of PTH.  相似文献   

5.
6.
The N-terminal domain of PTH(1-34) is critical for PTH-1 receptor (P1R) activation and has been postulated to be alpha-helical when bound to the receptor. We investigated the possibility that the side chains of residues 6 (Gln) and 10 (Gln or Asn) of PTH analogues, which would align on the same face of the predicted alpha-helix, could interact and thereby contribute to the PTH/P1R interaction process. We utilized PTH(1-11), PTH(1-14), and PTH(1-34) analogues substituted with alanine at one or both of these positions and functionally evaluated the peptides in cell lines (HKRK-B7 and HKRK-B28) stably expressing the P1R, as well as in COS-7 cells transiently expressing either the P1R or a P1R construct that lacks the amino-terminal extracellular domain (P1R-DelNt). In HKRK-B7 cells, the single substitutions of Gln(6) --> Ala and Gln(10) --> Ala reduced the cAMP-stimulating potency of [Ala(3),Gln(10),Arg(11)]rPTH(1-11)NH(2) approximately 60- and approximately 2-fold, respectively, whereas the combined Ala(6,10) substitution resulted in a approximately 2-fold gain in potency, relative to the single Ala(6) substitution. Similar effects on P1R-mediated cAMP-signaling potency and P1R-binding affinity were observed for these substitutions in [Aib(1,3),Gln(10),Har(11),Ala(12),Trp(14)]rPTH(1-14)NH(2). Installation of a lactam bridge between the Lys(6) and the Glu(10) side chains of [Ala(3,12),Lys(6),Glu(10),Har(11),Trp(14)]rPTH(1-14)NH(2) increased signaling potency 6-fold, relative to the nonbridged linear analogue. Alanine substitutions at positions 6 and/or 10 of [Tyr(34)]hPTH(1-34)NH(2) did not affect signaling potency nor binding affinity on the intact P1R; however, Ala(6) abolished PTH(1-34) signaling on P1R-DelNt, and this effect was reversed by Ala(10). The overall data support the hypothesis that the N-terminal portion of PTH is alpha-helical when bound to the activation domain of the PTH-1 receptor and they further suggest that intrahelical side chain interactions between residues 6 and 10 of the ligand can contribute to the receptor interaction process.  相似文献   

7.
The N-terminal fragment of PTH(1-34) is critical for PTH1 receptor activation. Various modifications of PTH(1-14) have been shown to result in a considerable increase in signaling potency [Shimizu et al. (2000) J. Biol. Chem. 275, 21836-21843]. Our structural investigations revealed an unusually stable helical structure of the signaling domain (1-14), where residues 6 (Gln) and 10 (Gln or Asn) were located on the same face of the alpha-helix. To test whether a stable N-terminal alpha-helix is required for productive interaction with PTH1 receptor, we designed two conformationally restricted PTH(1-14) analogues, each containing a lactam bridge at positions 6 and 10. Specifically, substitutions Gln(6)-->Glu(6) and Asn(10)-->Lys(10) were introduced into the most potent [Ala(1,3,12),Gln(10),Har(11),Trp(14)]PTH(1-14)NH2 agonist. Both the Glu(6)-Lys(10) and Lys(6)-Glu(10) lactam-bridged analogues were characterized to examine the importance of orientation of the lactam. According to biological studies [Shimizu et al. (2003) Biochemistry 42, 2282-2290], none of the 6/10 substituted analogues (linear or cyclic) remained as active as the parent peptide. However, relative to their corresponding linear peptides, lactam-bridged analogues either maintained potency or showed 6-fold improvement. High-resolution structures as determined by 1H NMR and NOE-restrained molecular dynamics simulations clearly illustrate the structural differences between the linear and cyclic PTH(1-14) fragments, supporting the hypothesis that an alpha-helix is the preferred bioactive conformation of the N-terminal fragment of PTH. In addition, our results demonstrate that the structural order of the very first residues (1-4) of the signaling domain plays a significant role in PTH action.  相似文献   

8.
Current antagonists for the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor (PTHR) are N-terminally truncated or N-terminally modified analogs of PTH(1-34) or PTHrP(1-34) and are thought to bind predominantly to the N-terminal extracellular (N) domain of the receptor. We hypothesized that ligands that bind only to PTHR region comprised of the extracellular loops and seven transmembrane helices (the juxtamembrane or J domain) could also antagonize the PTHR. To test this, we started with the J domain-selective agonists [Gln(10),Ala(12),Har(11),Trp(14),Arg(19) (M)]PTH(1-21), [M]PTH(1-15), and [M]PTH(1-14), and introduced substitutions at positions 1-3 that were predicted to dissociate PTHR binding and cAMP signaling activities. Strong dissociation was observed with the tri-residue sequence diethylglycine (Deg)(1)-para-benzoyl-l-phenylalanine (Bpa)(2)-Deg(3). In HKRK-B7 cells, which express the cloned human PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21), [Deg(1,3),Bpa(2),M]PTH(1-15), and [Deg(1,3),Bpa(2),M]PTH(1-14) fully inhibited (IC(50)s = 100-700 nm) the binding of (125)I-[alpha-aminoisobutyric acid(1,3),M]PTH(1-15) and were severely defective for stimulating cAMP accumulation. In ROS 17/2.8 cells, which express the native rat PTHR, [Deg(1,3),Bpa(2),M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) antagonized the cAMP-agonist action of PTH(1-34), as did PTHrP(5-36) (IC(50)s = 0.7 microm, 2.6 microm, and 36 nm, respectively). In COS-7 cells expressing PTHR-delNt, which lacks the N domain of the receptor, [Deg(1,3),Bpa(2), M]PTH(1-21) and [Deg(1,3),Bpa(2),M]PTH(1-15) inhibited the agonist actions of [alpha-aminoisobutyric acid(1,3)]PTH(1-34) and [M]PTH(1-14) (IC(50)s approximately 1 microm), whereas PTHrP(5-36) failed to inhibit. [Deg(1,3),Bpa(2),M]PTH(1-14) inhibited the constitutive cAMP-signaling activity of PTHR-tether-PTH(1-9), in which the PTH(1-9) sequence is covalently linked to the PTHR J domain, as well as that of PTHR(cam)H223R. Thus, the J-domain-selective N-terminal PTH fragment analogs can function as antagonists as well as inverse agonists for the PTHR. The new ligands described should be useful for further studies of the ligand binding and activation mechanisms that operate in the critical PTHR J domain.  相似文献   

9.
Interactions between the N-terminal residues of parathyroid hormone (PTH) and the region of the PTH receptor containing the extracellular loops and transmembrane domains are thought to be critical for receptor activation. We evaluated this hypothesis by replacing the large N-terminal extracellular domain of the human type 1 PTH receptor (hP1Rc-WT) with residues 1-9 of PTH (AVSEIQLMH) using a tetraglycine linker between His-9 of the ligand and Glu-182 of the receptor near the extracellular terminus of transmembrane domain-1. Expression of this construct, hP1Rc-Tether(1-9), in COS-7 cells resulted in basal cAMP levels that were 10-fold higher than those seen in control cells transfected with hP1Rc-WT. Extending the ligand sequence to include Asn-10 and the activity-enhancing substitution of Leu-11 --> Arg yielded hP1Rc-[Arg(11)]Tether(1-11), for which we observed basal cAMP levels that were 50-fold higher than those seen with P1Rc-WT. An alanine-scan analysis of hP1Rc-[Arg(11)]Tether(1-11) revealed that Gln-6 and His-9 were not critical for autoactivation, whereas Val-2, Ile-5, and Met-8 were. The data show that tethered PTH/PTH receptors can autoactivate. Analysis of the structure-activity relationships in these tethered receptor constructs can provide new information concerning how the N-terminal residues of PTH interact with the extracellular loops and transmembrane regions of the PTH-1 receptor, particularly in regard to receptor activation.  相似文献   

10.
Chicken parathyroid hormone (cPTH) has been reported to stimulate adrenal steroidogenesis and to have unusual potency on traditional PTH target tissues. To evaluate these properties, chicken PTH-(1-88) has been expressed in Escherichia coli using a plasmid encoding a fusion protein which links together growth hormone, a factor Xa recognition site, and chicken PTH-(1-88). The growth hormone-cPTH fusion protein required the presence of 0.02% sodium dodecyl sulfate to remain in solution and be cleaved by factor Xa. The high performance liquid chromatography-purified recombinant cPTH-(1-88) and chemically synthesized cPTH-(1-34) had similar potency in rat osteosarcoma (ROS 17/2.8) cells, opossum kidney (OK) cells, and dispersed primary chicken kidney cells. The biologic potencies of cPTH-(1-34) and cPTH-(1-88) in radioreceptor binding and cAMP generation in both bone- and kidney-derived cell lines were less than those of human (h)PTH-(1-34). In dispersed chicken kidney cells, cAMP production by cPTH-(1-34) and cPTH-(1-88) was similar to that stimulated by human PTH-(1-34). No stimulation of steroidogenesis could be detected when recombinant chicken PTH-(1-88) was added to dispersed chicken adrenal cells. The biologic activity of recombinant chicken PTH-(1-88) purified from E. coli was comparable with that of chicken PTH-(1-88) expressed by mammalian COS cells. Thus, the full-length chicken PTH did not exhibit enhanced potency, when compared with human PTH in ROS 17/2.8, OK cell lines, and dispersed chicken kidney cells and did not demonstrate the novel steroidogenic action previously reported in adrenal cells. The successful production of chicken PTH-(1-88) will enhance our understanding of the structure-activity relationships for PTH, particularly the sequence-dependent metabolism of the hormone.  相似文献   

11.
In order to characterize the direct involvement of cAMP in the change of osteoblast proliferation by parathyroid hormone (PTH), we employed the diastereoisomers of adenosine 3',5'-cyclic phosphorothioate, Sp-cAMPS and Rp-cAMPS, which have been recently shown to act directly as agonist and antagonist, respectively in the activation of cAMP-dependent protein kinase (PKA). Dibutyryl cAMP (dbcAMP) and cholera toxin as well as human(h) PTH-(1-34) significantly inhibited [3H]thymidine incorporation (TdR) in osteoblastic osteosarcoma cells, UMR-106. Sp-cAMPS (10(-6)-10(-4) M) inhibited TdR in a dose-dependent manner. Although Rp-cAMPS (10(-6)-10(-4) M) itself did not affect TdR, it significantly blocked dbcAMP-, cholera toxin- and Sp-cAMPS-induced suppression of TdR. Moreover, Rp-cAMPS (10(-6)-10(-4) M) dose-dependently antagonized hPTH-induced suppression of TdR. Present studies first indicated that the activation of PKA is directly linked to the change of osteoblast proliferation by PTH.  相似文献   

12.
The human parathyroid hormone (PTH) receptor (hPTH1R), containing a 9-amino acid sequence of rhodopsin at its C terminus, was transiently expressed in COS-7 cells and solubilized with 0.25% n-dodecyl maltoside. Approximately 18 microg of hPTH1R were purified to homogeneity per mg of crude membranes by single-step affinity chromatography using 1D4, a monoclonal antibody to a rhodopsin epitope. The N terminus of the hPTH1R is Tyr(23), consistent with removal of the 22-amino acid signal peptide. Comparisons of hPTH1R by quantitative immunoblotting and Scatchard analysis revealed that 75% of the receptors in membrane preparations were functional; there was little, if any, loss of functional receptors during purification. The binding affinity of the purified hPTH1R was slightly lower than membrane-embedded hPTH1R (K(d) = 16.5 +/- 1.3 versus 11.9 +/- 1.9 nm), and the purified receptors bound rat [Nle(8,21),Tyr(34)]PTH-(1-34)-NH(2) (PTH-(1-34)), and rat [Ile(5),Trp(23),Tyr(36)]PTHrP-(5-36)-NH(2) with indistinguishable affinity. Maximal displacement of (125)I-PTH-(1-34) binding by rat [alpha-aminoisobutyric acid (Aib)(1,3),Nle(8),Gln(10),Har(11),Ala(12),Trp(14),Arg(19),Tyr(21)]PTH-(1-21)-NH(2) and rat [Aib(1,3),Gln(10),Har(11),Ala(12),Trp(14)]PTH-(1-14)-NH(2) of 80 and 10%, respectively, indicates that both N-terminal and juxtamembrane ligand binding determinants are functional in the purified hPTH1R. Finally, PTH stimulated [(35)S]GTP gamma S incorporation into G alpha(s) in a time- and dose-dependent manner, when recombinant hPTH1R, G alpha(s)-, and beta gamma-subunits were reconstituted in phospholipid vesicles. The methods described will enable structural studies of the hPTH1R, and they provide an efficient and general technique to purify proteins, particularly those of the class II G protein-coupled receptor family.  相似文献   

13.
Functional parathyroid hormone (PTH) and PTH-like peptide receptors were expressed in Xenopus laevis oocytes after injection of poly(A)+ RNA isolated from the rat osteogenic sarcoma cell line, UMR 106. Increases in cAMP were seen in individual oocytes in response to added bovine (b) PTH-(1-34) (10(-6) M), human (h) PLP-(1-34) (hPLP-(1-34), 10(-6) M), isoproterenol (10(-4) M), and forskolin (10(-4) M). Although both intracellular and extracellular cAMP levels were stimulated approximately 1.5-2-fold by these agonists, intracellular concentrations of cAMP were substantially higher than extracellular concentrations. Peak increases with bPTH-(1-34) occurred after a 30-min incubation with the hormone 48 h after oocyte injection. bPTH-(1-34) caused a concentration-dependent augmentation of cAMP in injected oocytes, and the in vitro antagonist hPLP-(3-34) produced dose-dependent inhibition of both bPTH-(1-34)- and hPLP-(1-34)-stimulated cAMP accumulation. Specific binding of PTH to oocyte membranes was also demonstrated 48 h after oocyte injection with UMR 106 cell mRNA. Following size fractionation of isolated UMR 106 poly(A)+ RNA by sucrose density gradients, mRNA directing the expression of both PTH- and PLP-stimulated cAMP in oocytes appeared in the 3.5-4.9-kilobase fraction. These results demonstrate that adenylate cyclase-coupled osseous PTH and PLP receptors can be expressed after injection of naturally occurring mRNA into Xenopus oocytes, that PTH- and PLP-stimulated increases in cAMP concentrations can be detected in individual oocytes injected with bone cell-derived mRNA, that PTH and PLP appear to cross-react at a common receptor after injection of UMR 106 cell mRNA into oocytes, and that size selection of mRNA encoding the PTH and PLP receptors can be achieved by density gradient centrifugation. These studies, therefore, indicate the potential usefulness of the Xenopus oocyte system in expression cloning of PTH and PLP receptor cDNAs and illustrate the feasibility of employing this system to examine the biology of PTH and PLP receptors.  相似文献   

14.
Bovine parathyroid hormone (PTH) 1-34 [bPTH(1-34)] and human PTH related protein [hPTHrP(1-34)] stimulated cAMP accumulation in opossum kidney (OK) cells with Km of 5 x 10(-9) M, but inhibition of phosphate uptake was obtained with 17-fold lower Km of 3 x 10(-10) M. Phosphate uptake was partially inhibited with [Nle8.18Tyr34]bPTH(3-34)NH2 without concomitant cAMP stimulation. With hPTHrP(7-34)NH2, cAMP accumulation was increased in parallel to inhibition of phosphate uptake. [D-Trp12Tyr34]bPTH(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 had no agonist activity on cellular cAMP and inhibition of phosphate uptake. bPTH(1-34)-stimulated cAMP accumulation was antagonized by [Nle8.18Tyr34]bPTH(3-34)NH2, [D-Trp12Tyr34]bPTH(7-34)NH2, hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 with Ki of 1.4 x 10(-7), 2 x 10(-7), 4.7 x 10(-7) and 3.7 x 10(-6) M, respectively. But [Nle8.18Tyr34]bPTH(3-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2 reversed the inhibition of phosphate uptake only marginally, and hPTHrP(7-34)NH2 and [Tyr34]hPTH(7-34)NH2 were inactive. With hPTHrP(1-34) the Ki for cAMP accumulation of [Nle8,18Tyr34]bPTH(3-34)NH2 and hPTHrP(7-34)NH2 were 1.9 x 10(-7) and 7.2 x 10(-7) M, and inhibition of phosphate uptake was partially reversed with [Nle8,18Tyr34]bPTH(3-34)NH2, but not with hPTHrP(7-34)NH2. The present results indicate that truncated hPTHrP(7-34)NH2, unlike [Tyr34]hPTH(7-34)NH2 and [D-Trp12Tyr34]bPTH(7-34)NH2, elevates cellular cAMP and inhibits phosphate uptake. bPTH(1-34)- and hPTHrP(1-34)-evoked cAMP accumulation is suppressed by PTH and PTHrP fragments while inhibition of phosphate uptake remains largely unaltered.  相似文献   

15.
The regulation of tissue turnover requires the coordinated activity of both local and systemic factors. Nucleotides exist transiently in the extracellular environment, where they serve as ligands to P2 receptors. Here we report that the localized release of these nucleotides can sensitize osteoblasts to the activity of systemic factors. We have investigated the ability of parathyroid hormone (PTH), a principal regulator of bone resorption and formation, to potentiate signals arising from nucleotide stimulation of UMR-106 clonal rat osteoblasts. PTH receptor activation alone did not lead to [Ca(2+)](i) elevation in these cells, indicating no G(q) coupling, however, activation of G(q)-coupled P2Y(1) receptors resulted in characteristic [Ca(2+)](i) release. PTH potentiated this nucleotide-induced Ca(2+) release, independently of Ca(2+) influx. PTH-(1-31), which activates only G(s), mimicked the actions of PTH-(1-34), whereas PTH-(3-34), which only activates G(q), was unable to potentiate nucleotide-induced [Ca(2+)](i) release. Despite this coupling of the PTHR to G(s), cAMP accumulation or protein kinase A activation did not contribute to the potentiation. 3-Isobutyl-1-methylxanthine, but not forskolin effectively potentiated nucleotide-induced [Ca(2+)](i) release, however, further experiments proved that cyclic monophosphates were not involved in the potentiation mechanism. Costimulation of UMR-106 cells with P2Y(1) agonists and PTH led to increased levels of cAMP response element-binding protein phosphorylation and a synergistic effect was observed on endogenous c-fos gene expression following costimulation. In fact the calcium responsive Ca/cAMP response element of the c-fos promoter alone was effective at driving this synergistic gene expression. These findings demonstrate that nucleotides can provide a targeted response to systemic factors, such as PTH, and have important implications for PTH-induced signaling in bone.  相似文献   

16.
Duvos C  Scutt A  Mayer H 《FEBS letters》2006,580(5):1509-1514
Different C-terminal fragments of parathyroid hormone (PTH)-(1-84) in blood participate in the regulation of calcium homeostasis by PTH-(1-84), and an antagonizing effect for the large carboxyl-terminal parathyroid hormone (C-PTH)-fragment (7-84) on calcium release has been described in vivo and in vitro. In this study the smaller C-PTH-fragment (53-84) and mid-regional PTH fragment (28-48), which represent discrete areas of activity in the PTH-(7-84) molecule, were assayed for their effects on calcium release and alkaline phosphatase (ALP) activity in a chick bone organ culture system. Neither PTH-(28-48) nor PTH-(53-84) had any effect on calcium release into the medium and both fragments stimulated ALP activity in the bone tissue, suggesting that the cAMP/PKA signalling pathway was not affected by these fragments. However they suppressed the calcium release induced by PTH-(1-34) and attenuated the down regulation of ALP activity caused by PTH-(1-34), suggesting that the effect on the cAMP/PKA signalling pathway may be indirectly. In conclusion, the study shows that the PTH-fragments (53-84) and (28-48) antagonize the PTH-(1-34) induced effects on calcium release and inhibition of ALP activity in a chick bone organ culture system.  相似文献   

17.
Agonist-mediated activation of the type 1 parathyroid hormone receptor (PTH1R) results in several signaling events and receptor endocytosis. It is well documented that arrestins contribute to desensitization of both G(s)- and G(q)-mediated signaling and mediate PTH1R internalization. However, whether PTH1R trafficking directly contributes to signaling remains unclear. To address this question, we investigated the role of PTH1R trafficking in cAMP signaling and activation of extracellular signal-regulated kinases ERK1/2 in HEK-293 cells. Dominant negative forms of dynamin (K44A-dynamin) and beta-arrestin1 (beta-arrestin1-(319-418)) abrogated PTH1R internalization but had no effect on cAMP signaling; neither acute cAMP production by PTH nor desensitization and resensitization of cAMP signaling were affected. Therefore, PTH1R trafficking is not necessary for regulation of cAMP signaling. PTH-(1-34) induced rapid and robust activation of ERK1/2. A PTHrP-based analog ([p-benzoylphenylalanine1, Ile5,Arg(11,13),Tyr36]PTHrP-(1-36)NH2), which selectively activates the G(s)/cAMP pathway without inducing PTH1R endocytosis, failed to stimulate ERK1/2 activity. Inhibition of PTH1R endocytosis by K44A-dynamin dampened ERK1/2 activation in response to PTH-(1-34) by 69%. Incubation with the epidermal growth factor receptor inhibitor AG1478 reduced ERK1/2 phosphorylation further. In addition, ERK1/2 phosphorylation occurred following internalization of a PTH1R mutant induced by PTH-(7-34) in the absence of G protein signaling. Collectively, these data indicate that PTH1R trafficking and G(q) (but not G(s)) signaling independently contribute to ERK1/2 activation, predominantly via transactivation of the epidermal growth factor receptor.  相似文献   

18.
Residue 19 of parathyroid hormone (PTH) plays a unique role in the interaction process with the PTH1 receptor. A Glu(19) --> Arg(19) substitution, based on the Arg(19) of the PTH-related protein (PTHrP), increases the binding affinity when incorporated into the N-terminus of PTH [i.e., PTH(1-20)] and has no effect when introduced into the C-terminus of PTH [i.e., PTH(15-31)]. To explore Arg(19) and the midregion (residues 10-15), we designed the novel PTH scaffold peptide, PG5, which has the PTH(1-9) domain linked to the PTH(15-31) segment via a pentaglycine spacer. Substitution of Glu(19) with Arg(19) in PG5 resulted in a 9-fold increase in binding affinity. Additionally, the substitution enhanced stimulated cAMP formation in cells expressing PTH1-delNt, a PTH1 receptor construct lacking most of the N-terminus, confirming that residue 19 is interacting with the juxtamembrane portion of PTH1. The binding and signaling capacities of the PG5 analogues were diminished relative to those of PTH(1-34), indicating that the residue 10-14 region of PTH provides more than just a simple linker function. To probe this further, the structural consequences of the glycine linker and its interaction with PTH1 were examined by circular dichroism, (1)H NMR, and extensive ligand/receptor molecular dynamics simulations. The structural data clearly illustrate the helix-stabilizing effect of Arg(19) substitution propagating N-terminally from position 19 to the pentaglycine linker. Overall, these studies suggest that an alpha-helix is the preferred conformation for the residue 15-20 region of PTH and that residues 10-14 are also required for full affinity and potency of the hormone.  相似文献   

19.
The present study was performed to investigate the regulation of cytosolic pH (pHi) and DNA synthesis by parathyroid hormone(PTH) and PTH-related peptide (PTHrP) in osteoblasts, using osteoblastic osteosarcoma cells, UMR-106 which possessed PTH-responsive dual signal transduction systems (cAMP-dependent protein kinase (PKA) and calcium/protein kinase C [Ca/PKC]) and amiloride-inhibitable Na+/H+ exchange system. Both human (h)PTH-(1-34) and hPTHrP-(1-34) caused a progressive decrease in pHi and the inhibition of [3H]thymidine incorporation (TdR) to the same degree in a dose-dependent manner with a minimal effective dose of 10(-10) M. Dibutyryl cAMP (10(-4) M and Sp-cAMPS (10(-4) M), a direct stimulator of PKA also caused a progressive decrease in pHi, and calcium ionophores (A23187 and ionomycin, 10(-6) M) caused a transient decrease in pHi. Pretreatment with amiloride (0.3 mM) mostly blocked dbcAMP- and Sp-cAMPS-induced decrease in pHi but did not affect calcium ionophore-induced decrease in pHi. In the presence of amiloride, PTH and PTHrP caused a transient decrease in pHi, which was similar to the pattern of calcium ionophore-induced change in pHi. Amiloride did not affect the inhibition of TdR by PTH or PTHrP as well as that by cAMP analogues or calcium ionophores. The present study indicated that PTH and PTHrP caused cytosolic acidification through PKA-inhibited Na+/H+ exchange and increased cytosolic calcium-induced pathway and that the regulation of DNA synthesis by PTH and PTHrP was not via Na+/H+ exchange system.  相似文献   

20.
Analogs of parathyroid hormone (PTH)-related protein (PTHrP), singularly substituted with a photoreactive L-p-benzoylphenylalanine (Bpa) at each of the first 6 N-terminal positions, were pharmacologically evaluated in human embryonic kidney cells stably expressing the recombinant human PTH/PTHrP receptor. Two of these analogs, in which the photoreactive residue is either in position 1 or 2 (Bpa(1)- and Bpa(2)-PTHrP, respectively) displayed high affinity binding. Bpa(1)-PTHrP also displayed high efficacy for the stimulation of increased cAMP levels. Surprisingly, Bpa(2)-PTHrP was found to be a potent antagonist, despite the presence of the principal activation domain (sequence 1-6). Analysis of the digestion profiles of the ligand-receptor photoconjugates revealed that both the agonist and the antagonist cross-link to the S-CH(3) group of Met(425) in transmembrane domain 6 of the human PTH/PTHrP receptor. However, the antagonist Bpa(2)-PTHrP also cross-links to a proximal site within the receptor domain Pro(415)-Met(425). Unlike the antagonist Bpa(2)-PTHrP, the potent agonist Bpa(2)-PTH, also bearing the Bpa residue in position 2, cross-links only to the S-CH(3) group of Met(425) (similar to Bpa(1)-PTHrP and Bpa(1)-PTH). Taken together, these results suggest that the antagonist Bpa(2)-PTHrP is able to distinguish between two distinct conformations of the receptor. The comparison between PTHrP analogs substituted by Bpa at two consecutive positions and across PTH and PTHrP reveals insights into the PTH/PTHrP ligand-receptor bimolecular interaction at the level of a single amino acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号