首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Gottlieb  G. Ruvkun 《Genetics》1994,137(1):107-120
Under conditions of high population density and low food, Caenorhabditis elegans forms an alternative third larval stage, called the dauer stage, which is resistant to desiccation and harsh environments. Genetic analysis of some dauer constitutive (Daf-c) and dauer defective (Daf-d) mutants has revealed a complex pathway that is likely to function in particular neurons and/or responding tissues. Here we analyze the genetic interactions between three genes which comprise a branch of the dauer formation pathway that acts in parallel to or downstream of the other branches of the pathway, the Daf-c genes daf-2 and daf-23 and the Daf-d gene daf-16. Unlike mutations in other Daf-c genes, mutations in both daf-2 and daf-23 cause non-conditional arrest at the dauer stage. Our epistasis analysis suggests that daf-2 and daf-23 are functioning at a similar point in the dauer pathway. First, mutations in daf-2 and daf-23 are epistatic to mutations in the same set of Daf-d genes. Second, daf-2 and daf-23 mutants are suppressed by mutations in daf-16. Mutations in daf-16 do not suppress any of the other Daf-c mutants as efficiently as they suppress daf-2 and daf-23 mutants. Third, double mutants between either daf-2 or daf-23 and several other daf-d mutants exhibit an unusual interaction. Based on these results, we present a model for the function of daf-2, daf-23 and daf-16 in dauer formation.  相似文献   

2.
J. H. Thomas  D. A. Birnby    J. J. Vowels 《Genetics》1993,134(4):1105-1117
Dauer formation in Caenorhabditis elegans is induced by chemosensation of high levels of a constitutively secreted pheromone. Seven genes defined by mutations that confer a dauer-formation constitutive phenotype (Daf-c) can be congruently divided into two groups by any of three criteria. Group 1 genes (daf-11 and daf-21) are (1) strongly synergistic with group 2 genes for their Daf-c phenotype, (2) incompletely suppressed by dauer-formation defective (Daf-d) mutations in the genes daf-3 and daf-5 and (3) strongly suppressed by Daf-d mutations in nine genes that affect the structure of chemosensory endings. Group 2 genes (daf-1, daf-4, daf-7, daf-8 and daf-14) are (1) strongly synergistic with group 1 genes for their Daf-c phenotype, (2) fully suppressed by Daf-d mutations in daf-3 and daf-5 and (3) not suppressed by Daf-d mutations in the nine genes that affect chemosensory ending structure. Mutations in each group of genes also cause distinct additional behavioral defects. We propose that these two groups of Daf-c genes act in parallel pathways that process sensory information. The two pathways are partially redundant with each other and normally act in concert to control dauer formation.  相似文献   

3.
H A Tissenbaum  G Ruvkun 《Genetics》1998,148(2):703-717
Mutations in daf-2 and age-1 cause a dramatic increase in longevity as well as developmental arrest at the dauer diapause stage in Caenorhabditis elegans. daf-2 and age-1 encode components of an insulin-like signaling pathway. Both daf-2 and age-1 act at a similar point in the genetic epistasis pathway for dauer arrest and longevity and regulate the activity of the daf-16 gene. Mutations in daf-16 cause a dauer-defective phenotype and are epistatic to the diapause arrest and life span extension phenotypes of daf-2 and age-1 mutants. Here we show that mutations in this pathway also affect fertility and embryonic development. Weak daf-2 alleles, and maternally rescued age-1 alleles that cause life span extension but do not arrest at the dauer stage, also reduce fertility and viability. We find that age-1(hx546) has reduced both maternal and zygotic age-1 activity. daf-16 mutations suppress all of the daf-2 and age-1 phenotypes, including dauer arrest, life span extension, reduced fertility, and viability defects. These data show that insulin signaling, mediated by DAF-2 through the AGE-1 phosphatidylinositol-3-OH kinase, regulates reproduction and embryonic development, as well as dauer diapause and life span, and that DAF-16 transduces these signals. The regulation of fertility, life span, and metabolism by an insulin-like signaling pathway is similar to the endocrine regulation of metabolism and fertility by mammalian insulin signaling.  相似文献   

4.
The nematode Caenorhabditis elegans responds to overcrowding and scarcity of food by arresting development as a dauer larva, a nonfeeding, long-lived, stress-resistant, alternative third-larval stage. Previous work has shown that mutations in the genes daf-2 (encoding a member of the insulin receptor family) and age-1 (encoding a PI 3-kinase) result in constitutive formation of dauer larvae (Daf-c), increased adult longevity (Age), and increased intrinsic thermotolerance (Itt). Some daf-2 mutants have additional developmental, behavioral, and reproductive defects. We have characterized in detail 15 temperature-sensitive and 1 nonconditional daf-2 allele to investigate the extent of daf-2 mutant defects and to examine whether specific mutant traits correlate with each other. The greatest longevity seen in daf-2 mutant adults was approximately three times that of wild type. The temperature-sensitive daf-2 mutants fell into two overlapping classes, including eight class 1 mutants, which are Daf-c, Age, and Itt, and exhibit low levels of L1 arrest at 25.5 degrees. Seven class 2 mutants also exhibit the class 1 defects as well as some or all of the following: reduced adult motility, abnormal adult body and gonad morphology, high levels of embryonic and L1 arrest, production of progeny late in life, and reduced brood size. The strengths of the Daf-c, Age, and Itt phenotypes largely correlated with each other but not with the strength of class 2-specific defects. This suggests that the DAF-2 receptor is bifunctional. Examination of the null phenotype revealed a maternally rescued egg, L1 lethal component, and a nonconditional Daf-c component. With respect to the Daf-c phenotype, the dauer-defective (Daf-d) mutation daf-12(m20) was epistatic to daf-2 class 1 alleles but not the severe class 2 alleles tested. All daf-2 mutant defects were suppressed by the daf-d mutation daf-16(m26). Our findings suggest a new model for daf-2, age-1, daf-12, and daf-16 interactions.  相似文献   

5.
P. L. Larsen  P. S. Albert    D. L. Riddle 《Genetics》1995,139(4):1567-1583
The nematode Caenorhabditis elegans responds to conditions of overcrowing and limited food by arresting development as a dauer larva. Genetic analysis of mutations that alter dauer larva formation (daf mutations) is presented along with an updated genetic pathway for dauer vs. nondauer development. Mutations in the daf-2 and daf-23 genes double adult life span, whereas mutations in four other dauer-constitutive genes positioned in a separate branch of this pathway (daf-1, daf-4, daf-7 and daf-8) do not. The increased life spans are suppressed completely by a daf-16 mutation and partially in a daf-2; daf-18 double mutant. A genetic pathway for determination of adult life span is presented based on the same strains and growth conditions used to characterize Daf phenotypes. Both dauer larva formation and adult life span are affected in daf-2; daf-12 double mutants in an allele-specific manner. Mutations in daf-12 do not extend adult life span, but certain combinations of daf-2 and daf-12 mutant alleles nearly quadruple it. This synergistic effect, which does not equivalently extend the fertile period, is the largest genetic extension of life span yet observed in a metazoan.  相似文献   

6.
E. A. Malone  J. H. Thomas 《Genetics》1994,136(3):879-886
In Caenorhabditis elegans, formation of the developmentally arrested dauer larva is induced by high levels of a constitutively secreted pheromone. Synergy between two groups of incompletely penetrant dauer-constitutive (Daf-c) mutations has recently led to a proposal that these two groups of genes are partially redundant and function in two parallel pathways that regulate dauer formation. A possible weakness in this reasoning is that the mutations used to identify the synergy were specifically obtained as incompletely penetrant mutations. Here we use screens to identify new Daf-c alleles without any requirement for partial penetrance. Nevertheless, 22 of the 25 new mutations are incompletely penetrant mutations in 6 previously identified genes. Among these are mutations in daf-8 and daf-19, genes for which only one mutation had been previously identified. Also included in this group are three daf-1 alleles that do not exhibit the maternal rescue characteristic of other daf-1 alleles. Two of the 25 new mutations are fully penetrant and are alleles of daf-2, the one gene in which a fully penetrant mutation had been found earlier. Finally, one of the 25 new mutations is semidominant, temperature-sensitive, and identifies a new gene, daf-28. The results demonstrate that an incompletely penetrant Daf-c phenotype is characteristic of mutations in most Daf-c genes other than daf-2. This finding strengthens the hypothesis that a branched genetic pathway controls dauer formation.  相似文献   

7.
J. B. Dorman  B. Albinder  T. Shroyer    C. Kenyon 《Genetics》1995,141(4):1399-1406
Recessive mutations in two genes, daf-2 and age-1, extend the lifespan of Caenorhabditis elegans significantly. The daf-2 gene also regulates formation of an alternative developmental state called the dauer. Here we asked whether these two genes function in the same or different lifespan pathways. We found that the longevity of both age-1 and daf-2 mutants requires the activities of the same two genes, daf-16 and daf-18. In addition, the daf-2(e1370); age-1(hx546) double mutant did not live significantly longer than the daf-2 single mutant. We also found that, like daf-2 mutations, the age-1(hx546) mutation affects certain aspects of dauer formation. These findings suggest that age-1 and daf-2 mutations do act in the same lifespan pathway and extend lifespan by triggering similar if not identical processes.  相似文献   

8.
Thioredoxins comprise a conserved family of redox regulators involved in many biological processes, including stress resistance and aging. We report that the C. elegans thioredoxin TRX-1 acts in ASJ head sensory neurons as a novel modulator of the insulin-like neuropeptide DAF-28 during dauer formation. We show that increased formation of stress-resistant, long-lived dauer larvae in mutants for the gene encoding the insulin-like neuropeptide DAF-28 requires TRX-1 acting in ASJ neurons, upstream of the insulin-like receptor DAF-2. Genetic rescue experiments demonstrate that redox-independent functions of TRX-1 specifically in ASJ neurons are needed for the dauer formation constitutive (Daf-c) phenotype of daf-28 mutants. GFP reporters of trx-1 and daf-28 show opposing expression patterns in dauers (i.e. trx-1 is up-regulated and daf-28 is down-regulated), an effect that is not observed in growing L2/L3 larvae. In addition, functional TRX-1 is required for the down-regulation of a GFP reporter of daf-28 during dauer formation, a process that is likely subject to DAF-28-mediated feedback regulation. Our findings demonstrate that TRX-1 modulates DAF-28 signaling by contributing to the down-regulation of daf-28 expression during dauer formation. We propose that TRX-1 acts as a fluctuating neuronal signaling modulator within ASJ neurons to monitor the adjustment of neuropeptide expression, including insulin-like proteins, during dauer formation in response to adverse environmental conditions.  相似文献   

9.
J. J. Vowels  J. H. Thomas 《Genetics》1992,130(1):105-123
Dauer larva formation in Caenorhabditis elegans is controlled by chemosensory cells that respond to environmental cues. Genetic interactions among mutations in 23 genes that affect dauer larva formation were investigated. Mutations in seven genes that cause constitutive dauer formation, and mutations in 16 genes that either block dauer formation or result in the formation of abnormal dauers, were analyzed. Double mutants between dauer-constitutive and dauer-defective mutations were constructed and characterized for their capacity to form dauer larvae. Many of the genes could be interpreted to lie in a simple linear epistasis pathway. Three genes, daf-16, daf-18 and daf-20, may affect downstream steps in a branched part of the pathway. Three other genes, daf-2, daf-3 and daf-5, displayed partial or complex epistasis interactions that were difficult to interpret as part of a simple linear pathway. Dauer-defective mutations in nine genes cause structurally defective chemosensory cilia, thereby blocking chemosensation. Mutations in all nine of these genes appear to fall at a single step in the epistasis pathway. Dauer-constitutive mutations in one gene, daf-11, were strongly suppressed for dauer formation by mutations in the nine cilium-structure genes. Mutations in the other six dauer-constitutive genes caused dauer formation despite the absence of functional chemosensory endings. These results suggest that daf-11 is directly involved in chemosensory transduction essential for dauer formation, while the other Daf-c genes play roles downstream of the chemosensory step.  相似文献   

10.
11.
Mutations in the human NPC1 gene cause most cases of Niemann-Pick type C (NP-C) disease, a fatal autosomal recessive neurodegenerative disorder. NPC1 is implicated in intracellular trafficking of cholesterol and glycolipids, but its exact function remains unclear. The C. elegans genome contains two homologs of NPC1, ncr-1 and ncr-2, and an ncr-2; ncr-1 double deletion mutant forms dauer larvae constitutively (Daf-c). We have analyzed the phenotypes of ncr single and double mutants in detail, and determined the ncr gene expression patterns. We find that the ncr genes function in a hormonal branch of the dauer formation pathway upstream of daf-9 and daf-12, which encode a cytochrome P450 enzyme and a nuclear hormone receptor, respectively. ncr-1 is expressed broadly in tissues with high levels of cholesterol, whereas expression of ncr-2 is restricted to a few cells. Both Ncr genes are expressed in the XXX cells, which are implicated in regulating dauer formation via the daf-9 pathway. Only the ncr-1 mutant is hypersensitive to cholesterol deprivation and to progesterone, an inhibitor of intracellular cholesterol trafficking. Our results support the hypothesis that ncr-1 and ncr-2 are involved in intracellular cholesterol processing in C. elegans, and that a sterol-signaling defect is responsible for the Daf-c phenotype of the ncr-2; ncr-1 mutant.  相似文献   

12.
Mutations in the daf-2 and age-1 genes cause constitutive dauer larva formation and double adult life span in C. elegans. Their effect on life span has excited considerable interest and their effect on dauer formation has facilitated rapid progress in their genetic and molecular analysis. Two recent papers12,13 report that daf-2 encodes a member of the insulin-receptor family and that age-1 encodes a PI3 kinase subunit, a second-messenger producing enzyme known to act downstream of the mammalian insulin receptor. These findings provide the first mechanistic insight into the well-established link between metabolism and aging. BioEssays 20:113–115, 1998. © 1998 John Wiley & Sons, Inc.  相似文献   

13.
Inoue T  Thomas JH 《Genetics》2000,156(3):1035-1046
The dauer is a developmentally arrested alternative third larval stage of Caenorhabditis elegans. Entry into this state is regulated by environmental cues, including temperature, food, and the concentration of constitutively secreted dauer pheromone. Genetically, three parallel pathways have been found that regulate this process. Of these, the group 2 pathway, which includes the genes daf-1, daf-3, daf-4, daf-5, daf-7, daf-8, and daf-14, mediates the transduction of environmental signals through the ASI chemosensory neuron and encodes a TGF-beta-related signaling pathway. To identify additional genes that function in this pathway, we carried out a screen for suppressors of mutations in daf-1, daf-8, and daf-14. From the total of 36 mutations, seven complementation groups were identified. Three complementation groups correspond to the previously described genes daf-3, daf-5, and daf-12. Three correspond to novel genes scd-1, scd-2, and scd-3. Genetic analysis of these scd genes is presented here. A fourth complementation group was represented by a single mutation sa315, which affects the daf-2/age-1 insulin-related signaling pathway.  相似文献   

14.
KIN-8 in C. elegans is highly homologous to human ROR-1 and 2 receptor tyrosine kinases of unknown functions. These kinases belong to a new subfamily related to the Trk subfamily. A kin-8 promoter::gfp fusion gene was expressed in ASI and many other neurons as well as in pharyngeal and head muscles. A kin-8 deletion mutant was isolated and showed constitutive dauer larva formation (Daf-c) phenotype: about half of the F(1) progeny became dauer larvae when they were cultivated on an old lawn of E. coli as food. Among the cells expressing kin-8::gfp, only ASI sensory neurons are known to express DAF-7 TGF-(beta), a key molecule preventing dauer larva formation. In the kin-8 deletion mutant, expression of daf-7::gfp in ASI was greatly reduced, dye-filling in ASI was specifically lost and ASI sensory processes did not completely extend into the amphid pore. The Daf-c phenotype was suppressed by daf-7 cDNA expression or a daf-3 null mutation. ASI-directed expression of kin-8 cDNA under the daf-7 promoter or expression by a heat shock promoter rescued the dye-filling defect, but not the Daf-c phenotype, of the kin-8 mutant. These results show that the kin-8 mutation causes the Daf-c phenotype through reduction of the daf-7 gene expression and that KIN-8 function is cell-autonomous for the dye-filling in ASI. KIN-8 is required for the process development of ASI, and also involved in promotion of daf-7 expression through a physiological or developmental function.  相似文献   

15.
The tumour suppressor gene PTEN (also called MMAC1 or TEP1) is somatically mutated in a variety of cancer types [1] [2] [3] [4]. In addition, germline mutation of PTEN is responsible for two dominantly inherited, related cancer syndromes called Cowden disease and Bannayan-Ruvalcaba-Riley syndrome [4]. PTEN encodes a dual-specificity phosphatase that inhibits cell spreading and migration partly by inhibiting integrin-mediated signalling [5] [6] [7]. Furthermore, PTEN regulates the levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3) by specifically dephosphorylating position 3 on the inositol ring [8]. We report here that the dauer formation gene daf-18 is the Caenorhabditis elegans homologue of PTEN. DAF-18 is a component of the insulin-like signalling pathway controlling entry into diapause and adult longevity that is regulated by the DAF-2 receptor tyrosine kinase and the AGE-1 PI 3-kinase [9]. Others have shown that mutation of daf-18 suppresses the life extension and constitutive dauer formation associated with daf-2 or age-1 mutants. Similarly, we show that inactivation of daf-18 by RNA-mediated interference mimics this suppression, and that a wild-type daf-18 transgene rescues the dauer defect. These results indicate that PTEN/daf-18 antagonizes the DAF-2-AGE-1 pathway, perhaps by catalyzing dephosphorylation of the PIP3 generated by AGE-1. These data further support the notion that mutations of PTEN contribute to the development of human neoplasia through an aberrant activation of the PI 3-kinase signalling cascade.  相似文献   

16.
Mutants of Caenorhabditis elegans that form dauer-like larvae   总被引:7,自引:0,他引:7  
The development, ultrastructure, and genetics of two mutants that form dauer-like larvae have been characterized. Dauer larva morphogenesis is initiated regardless of environmental stimuli, and it is incomplete or abnormal. The resistance to detergent characteristic of normal dauer larvae is not fully achieved, and the mutants are unable to exit from the dauer-like state of developmental arrest. Mutant life span is not extended beyond the three weeks characteristic of the nondauer life cycle, whereas normal dauer larvae can live for several months. Growth of daf-15(m81)IV, the less dauer-like of the two, is nearly arrested at the second (dauer-specific) molt, but feeding is not completely suppressed. Head shape, cuticle, and intestinal ultrastructure are nondauer, whereas sensory structures (amphid and deirid) and excretory gland morphology are intermediate between that of dauer and nondauer stages. The daf-9(e1406)X mutant is dauer-like in head shape, cuticle, and deirid ultrastructure, intermediate in amphid and inner labial neuron morphology, and nondauer or abnormal in the intestine. Also, the daf-9 mutant exhibits abnormalities in the pharyngeal arcade cell processes and pharyngeal g1 gland. Double mutants carrying both daf-9 and daf-15 are more resistant to detergent than either single mutant. Like the single mutants, they cannot complete morphogenesis, and they are unable to exit from the dauer-like stage. Both daf-9 and daf-15 mutations are epistatic to previously described dauer-defective mutations, indicating that these two genes act late in the pathway leading to the dauer larva. The genetic tests and the mutant ultrastructure suggest that the two genes may affect parallel pathways of morphogenesis.  相似文献   

17.
S. Murakami  T. E. Johnson 《Genetics》1996,143(3):1207-1218
A variety of mechanisms have been proposed to explain the extension of adult life span (Age) seen in several mutants in Caenorhabditis elegans (age-1: an altered aging rate; daf-2 and daf-23: activation of a dauer-specific longevity program; spe-26: reduced fertility; clk-1: an altered biological clock). Using an assay for ultraviolet (UV) resistance in young adult hermaphrodites (survival after UV irradiation), we observed that all these Age mutants show increased resistance to UV. Moreover, mutations in daf-16 suppressed the UV resistance as well as the increased longevity of all the Age mutants. In contrast to the multiple mechanisms initially proposed, these results suggest that a single, daf-16-dependent pathway, specifies both extended life span and increased UV resistance. The mutations in daf-16 did not alter the reduced fertility of spe-26 and interestingly a daf-16 mutant is more fertile than wild type. We propose that life span and some aspects of stress resistance are jointly negatively regulated by a set of gerontogenes (genes whose alteration causes life extension) in C. elegans.  相似文献   

18.
We have previously shown that the proteasome activator PA28 is essential to Hsp90-dependent protein refolding in vitro, where PA28 mediates transfer of the Hsp90-bound substrate protein to the Hsc70/Hsp40 chaperone machine for its correct refolding. This observation suggests that PA28 may also collaborate with Hsp90 in cells. To examine this possibility, here we have used double-stranded RNA interference (RNAi) against PA28 in Caenorhabditis elegans mutants of daf-21, which encodes Hsp90. We show that C. elegans PA28 facilitates Hsp90-initiated protein refolding, albeit with an activity lower than that of mouse PA28 proteins. RNAi-mediated knockdown of PA28 significantly suppresses the Daf-c (dauer formation constitutive) phenotype of the daf-21 mutant, but it has no affect on the distinct defects of this mutant in sensing odorants. Taking these results together, we conclude that PA28 is likely to function in collaboration with Hsp90 in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号