首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graham M.  Lenton 《Ibis》1984,126(2):188-197
Moult in Malayan Barn Owls Tyto alba was studied in two pairs of wild collected captive birds and from feathers taken from nest sites throughout peninsular Malaysia.
Post-juvenile captive birds moulted nearly to completion prior to first breeding, beginning with P6 at a mean age of 301.5 days. This contrasted with the only other study of moult in captive Barn Ow-Is in Germany when moult began at an age of 400 days, and then continued for a protracted period of two years separated by a suspension of moult during the normal breeding season.
The complex sequence of moult in primaries and secondaries both in the Malayan and German birds was similar.
Moult among adult Malayan birds in the wild showed a broad and somebyhat irregular seasonal trend With lower incidence during peak breeding periods.  相似文献   

2.
The regression methods frequently used to estimate the parameters associated with primary moult in birds are unsatisfactory. Results obtained using least squares regression, and various ad hoc adaptations, are so obviously incorrect that many authors have fitted lines 'by eye' (Newton 1968, Thomas & Dartnall 1971, Elliott et al. 1976, Morrison 1976, Appleton & Minton 1978). In a comparison of seven regression methods, estimates of the average starting date varied between 29 June and 31 July, completion date between 2 and 24 October, and duration of moult between 72 and 109 days for the Redshank Tringo totonus, in spite of the very large sample of 1482 observations (Summers et al. 1983). In this paper we present a new approach to the analysis of primary moult and develop a mathematical model specifically designed for moult data.  相似文献   

3.
W. R. J. Dean 《Ostrich》2013,84(4):234-239
Dean, W. R. J. 1979. Population, diet and the annual cycle of the Laughing Dove at Barbers-pan, Part 3: The annual cycle. Ostrich 50:234-239.

Laughing Doves Streptopelia senegalensis were collected each month from July 1976 to June 1977. In each sample some males and females were breeding. Breeding and primary moult overlapped, and some birds began to moult after starting to breed, and began to breed after starting moult. Adult Laughing Doves require about 120 days to complete primary moult, and juveniles require about 90 days. Weights of moulting birds were not significantly different from those of non-moulting birds, and there were no seasonal trends in the weights of either group. The mean weight of 79 males was 101,6 g and of 39 females was 100,2 g.  相似文献   

4.
The regression methods frequently used to estimate the parameters associated with primary moult in birds are unsatisfactory. Results obtained using least squares regression, and various ad hoc adaptations, are so obviously incorrect that many authors have fitted lines ‘by eye’ (Newton 1968, Thomas & Dartnall 1971, Elliott et al. 1976, Morrison 1976, Appleton & Minton 1978). In a comparison of seven regression methods, estimates of the average starting date varied between 29 June and 31 July, completion date between 2 and 24 October, and duration of moult between 72 and 109 days for the Redshank Tringa totanus, in spite of the very large sample of 1482 observations (Summers et al. 1983). In this paper we present a new approach to the analysis of primary moult and develop a mathematical model specifically designed for moult data.  相似文献   

5.
For migratory species, the success of population reintroduction or reinforcement through captive‐bred released individuals depends on survivors undertaking appropriate migrations. We assess whether captive‐bred Asian Houbara Chlamydotis macqueenii from a breeding programme established with locally sourced individuals and released into suitable habitat during spring or summer undertake similar migrations to those of wild birds. Using satellite telemetry, we compare the migrations of 29 captive‐bred juveniles, 10 wild juveniles and 39 wild adults (including three birds first tracked as juveniles), examining migratory propensity (proportion migrating), timing, direction, stopover duration and frequency, efficiency (route deviation), and wintering and breeding season locations. Captive‐bred birds initiated autumn migration an average of 20.6 (±4.6 se) days later and wintered 470.8 km (±76.4) closer to the breeding grounds, mainly in Turkmenistan, northern Iran and Afghanistan, than wild birds, which migrated 1217.8 km (±76.4), predominantly wintering in southern Iran and Pakistan (juveniles and adults were similar). Wintering locations of four surviving captive‐bred birds were similar in subsequent years (median distance to first wintering site = 70.8 km, range 6.56–221.6 km), suggesting that individual captive‐bred birds (but not necessarily their progeny) remain faithful to their first wintering latitude. The migratory performance of captive‐bred birds was otherwise similar to that of wild juveniles. Although the long‐term fitness consequences for captive‐bred birds establishing wintering sites at the northern edge of those occupied by wild birds remain to be quantified, it is clear that the pattern of wild migrations established by long‐term selection is not replicated. If the shorter migration distance of young captive‐bred birds has a physiological rather than a genetic basis, then their progeny may still exhibit wild‐type migration. However, as there is a considerable genetic component to migration, captive breeding management must respect migratory population structure as well as natal and release‐site fidelity.  相似文献   

6.
In this study, we describe and compare the duration and timing of post-breeding moult of primary and secondary wing feathers, tail feathers, wing coverts and body feathers in captive partially migratory and non-migratory Australian silvereyes (Zosterops lateralis). This study allowed us to follow individual birds through the course of their moult and record the progression of moult in two populations. Both groups of birds underwent a conventional (or basic) post-breeding moult. While all birds followed a similar pattern of feather replacement, differences were found in the timing and duration of moult between migratory and non-migratory birds. The migratory birds generally started their moult earlier in the year and completed it before the non-migratory birds. The migratory birds revealed an overall uniformity in the timing and duration of their moult, while the non-migratory birds showed a greater degree of variability between individuals.  相似文献   

7.
Remigial moult is one of the crucial events in the annual life cycle of waterfowl as it is energetically costly, lasts several weeks, and is a period of high vulnerability due to flightlessness. In waterfowl, remigial moult can be considered as an energy-predation trade-off, meaning that heavier individuals would minimise the flightless period by increasing feather growth rate and energy expenditure. Alternatively, they could reduce body mass at the end of this period, thereby reducing wing-loading to increase flight capability. We studied timing of remigial moult, primary growth rates, flightlessness duration, and the pattern of body mass variation in 5 species of captive seaducks (Melanitta fusca, M. perspicillata, Clangula hyemalis, Histrionicus histrionicus, and Somateria mollissima) ranging in size from 0.5 to 2.0 kg. Their feather growth rates weakly increased with body mass (M0.059) and no correlation was found at the intra-specific level. Consequently, heavier seaduck species and especially heavier individuals had a longer flightless period. Although birds had access to food ad libidum, body mass first increased then decreased, the latter coinciding with maximum feather growth rate. Level of body mass when birds regained flight ability was similar to level observed at the beginning of remigial moult, suggesting they were not using a strategic reduction of body mass to reduce the flightlessness duration. We suggest that the moulting strategy of seaducks may be the result of a compromise between using an intense moult strategy (simultaneous moult) and a low feather growth rate without prejudice to feather quality. Despite the controlled captive status of the studied seaducks, all five species as well as both sexes within each species showed timing of moult reflecting that of wild birds, suggesting there is a genetic component acting to shape moult timing within wild birds.  相似文献   

8.
I. NEWTON  & P. ROTHERY 《Ibis》2005,147(4):667-679
Moult was studied in 1 year among Greenfinches trapped in a garden in east‐central England. Over the period June–December 2003, 333 captures of 179 individual adults provided information on breeding condition, moult, body weight, sex and age (yearling or older adult, equivalent to birds in their second or later calendar years, respectively). About 95% of all birds (sex and age groups combined) started primary feather moult from 2 July to 14 August, and finished from 10 October to 22 November. The mean date of moult onset in the population as a whole was 24 July. On average, males began 8 days before females, and yearlings began 6 days before older birds. The mean duration of moult was 100 days, whether the figure was calculated for the population as a whole or just for the 36 individual birds that were caught more than once during moult. However, moult rate was slightly slower, and moult duration slightly longer, in yearlings than in older adults of both sexes. No evidence was found for any systematic relationship between moult onset date and rate (duration). Breeding and moult overlapped by up to 5 weeks or more in individual birds, and some birds probably started to moult as early as the incubation stage of their last clutch of the season. The cloacal protuberance (taken as indicative of breeding condition) had regressed in all males by the time the fifth primary was shed, and the brood patch had regressed and re‐feathered in all females by the time the fourth primary was shed. The bulk of feather replacement in the secondary, tail and body tracts occurred in the second half of primary moult, and after cloacal protuberances and brood patches were completely regressed. In all birds examined near the end of primary moult the secondaries were still growing, and would have continued growth for up to another 19 days or more, extending the end of the moulting season into December. Body mass during moult was affected significantly by sex and age, as well as by time of day, amount of food in gullet, reproductive condition and date. No firm evidence emerged that body mass was affected by moult stage, after allowing for effects of date and other variables (although there was a non‐significant negative relationship between moult stage and body mass in males). In the population as a whole, the breeding season (from first egg‐laying to independence of last young) was spread over 21 weeks and moult over 24 weeks. With an overlap between the two events at the population level of up to 9 weeks, the two processes together took up to 36 weeks, some 69% of the year.  相似文献   

9.
《Ostrich》2013,84(3):265-268
During the analysis of moult records from the SAFRING database it was found that for some datasets the records were not evenly distributed temporally and the proportion of moulting to non-moulting birds was not what would be expected from random sampling. In an attempt to balance these data, the records of non-moulting birds were subsampled with different sample sizes prior to moult regression analysis, and the resulting moult estimates were then compared. The results suggest that subsampling non-moulting birds such that they occur in the expected proportion to actively moulting birds, based on the duration of moult, provides the best estimates of moult.  相似文献   

10.
Long-distance migrants have evolved complex strategies for the timing of their annual moult, fattening and migration cycles. These strategies are likely to vary at different stages of a bird's life. Ringing data on 6079 Grey Plovers Pluvialis squatarola , caught on the Wash, England, between 1959 and 1996, were analysed to relate migratory strategies to patterns of primary moult and body mass changes. Adults returning from breeding grounds had a shorter and delayed primary moult (duration 90 days, starting date 19 August) in comparison with over-summering birds (duration 109 days, starting date 5 June). Three categories of migrant adults were identified on the basis of primary moult and body mass: (1) birds which did not moult, but increased body mass and migrated further south; (2) birds which moulted 1–3 inner primaries, suspended moult, increased body mass and migrated; and (3) birds which completed or suspended moult and wintered locally. In birds of the second category, timing of primary moult and body mass increase overlapped. Among wintering birds, 38% were in suspended moult. Ninety-six per cent of birds that suspended moult at the beginning of winter were males and almost all completed moult in spring. Grey Plovers which left Britain in autumn had an average body mass of 280 g, enough to reach southern Morocco without refuelling. Both wintering adults and first-year birds showed a prewinter body mass increase, peaking in December. Adults had a synchronized premigratory body mass increase in May, which suggested a negligible presence of African migrants. The average departure mass for spring migration, estimated at 316 g, would allow birds to fly non-stop to the Siberian breeding grounds in western Taymyr.  相似文献   

11.
Timing and duration of primary moult in three populations of Purple Sandpipers Calidris maritima were described and discussed in relation to the birds’ need to complete moult before the onset of winter, when resources are required for survival. We predicted that moult would be completed earlier by birds wintering at higher latitudes. The south Norwegian breeding population, which moults and winters along the coast of east Britain (54–57°N) had a mean starting date of 21 July for primary moult (16 July for females and 24 July for males), a mean duration of 61 days, and completed on 20 September. Resident Icelandic (64–65°N) birds had a mean starting date of 22 July for primary moult (17 July for females and 25 July for males), a mean duration of 51 days, and completed on 11 September. Birds moulting in north Norway (70°N) arrived in north Norway in suspended primary moult or without having started moult, and completed it there. They had a mean completion date of 2 November for primary moult (31 October for females and 3 November for males). Starting date and duration could not be estimated because some suspended moult for an undetermined period, but it was thought that they started in late August. It is likely that most originated from Russia. The onset of moult appears to be set by the end of breeding and there is little overlap in these two events. The earlier start of moult by females in all three populations may be because they abandon the males when the chicks hatch, leaving the males to attend the chicks. Although the duration of primary moult followed the expected trend, being fastest in north Norway and slowest in Britain, the onset of moult was so late in north Norway that they had an unexpectedly late completion date, despite their rapid moult. The late completion of primary moult in north Norway suggests that wintering in the far north may not pose the energetic constraints on Purple Sandpipers that had previously been supposed.  相似文献   

12.
Many different behavioural changes have been observed in wild waterfowl during the flightless stage of wing moult with birds frequently becoming inactive and reducing time spent foraging. Increased predation risk, elevated energetic demands of feather re-growth and restriction of foraging opportunities are thought to underlie these changes. By studying captive populations of both a dabbling and a diving duck species at the same site, we determined whether captive birds would reflect the behavioural responses of wild waterfowl to moult. The time-budgets of 42 Common Eiders, Somateria mollissima, (a diving duck) and 18 Garganeys, Anas querquedula, (a dabbling duck) were recorded during wing moult (July–August) and non-moult (January) with behaviour recorded under six categories. Despite captivity providing a low predation risk and constant access to food, birds altered their behaviour during the flightless period of wing moult. Time allocated to foraging and locomotion decreased significantly during moult compared to non-moult periods, while resting time increased significantly. Moulting Eiders underwent a greater reduction in time spent foraging and in locomotion compared with Garganeys, which is likely to be in response to a higher energetic cost of foraging in Eiders. It is possible that increased resting in both diving and dabbling ducks reduces their likelihood of detection by predators, while allowing them to remain vigilant. We demonstrate that there is much potential for using captive animals in studies that can augment our knowledge of behaviours of free-living conspecifics, the former being a hitherto under-exploited resource.  相似文献   

13.
Raymond  Hewson 《Journal of Zoology》1973,171(2):177-187
The moults of captive Scottish ptarmigan were studied at Banchory, north-east Scotland from December 1968 to February 1971. In the autumn moult (June to September) which included the primaries, cock ptarmigan moulted earlier and more completely than hens. In the winter moult (September to February) hens moulted earlier and both sexes moulted more completely than in spring. In the spring moult (February to June) cocks moulted more rapidly to begin with but by mid-April hens had caught up and thereafter moulted at least as rapidly as cocks. When kept indoors at slightly higher temperatures ptarmigan grew more pigmented feathers during the winter moult. In a colder winter the birds became whiter than in a milder one. First-winter ptarmigan completed the winter moult later than older birds. Birds from the Cairnwell hills had more dark feathers in winter than those from the eastern Cairngorms. There was no correlation between the start or finish of egg-laying and moulting.  相似文献   

14.
Birds use change in daylength during the year to time events during their annual cycles. Individual Eurasian siskins Carduelis spinus can breed and winter in widely separated areas in different years. Birds at different latitudes will experience different changes in photoperiod. So how does latitude affect photoperiodic control? Our aim in this study was to find whether Siskins caught from the wild in Britain and exposed to different photoperiodic regimes, typical of widely separated latitudes, would differ in the subsequent timing and duration of their moults and associated processes. Siskins were caught in late February and early March, and initially kept outside on natural photoperiods. From the spring equinox (21 March), they were divided into three groups kept under photoperiodic regimes that simulated latitudes 40°, 55° and 70°N respectively. All three groups showed highly significant subsequent changes in body mass, fat scores and cloacal protuberance size. Moult of the primary feathers started during June – August (mean 9 July), and lasted 61–99 days (mean 75 days). Birds that started to moult late in the season had shorter moult durations. All individuals showed lower mass and fat levels during moult than before or after moult. Crucially, there were no significant differences in the timing of these events between the three photoperiodic groups. Apparently these birds did not use prevailing absolute photoperiod or the prevailing rate of change in photoperiod to time moult‐related seasonal events, but used instead some other feature of the annual photoperiod cycle or some form of interval timer linked to photoperiod.  相似文献   

15.
There is growing evidence that moult speed affects plumage quality. In many bird species, males and females differ in terms of breeding effort, survival expectation and the relationship between fitness and plumage quality. Consequently, differences in moult strategies between the sexes can be expected. The aim of this study was to assess whether, under simulated time constraints and with no parental investment in the previous breeding season, males and females differed in: a) timing and duration of primary moult, b) growth rates of individual primary feathers, and c) number of concurrently growing feathers. We investigated the effect of time constraints generated by a treatment consisting of two decreasing photoperiods (slow changing photoperiod, SCP=2 min day?1 and fast changing photoperiod, FCP=8 min day?1) on the primary post‐nuptial moult of captive rock sparrows Petronia petronia. Females started to moult on average 14 and 15 days later than males in both experimental groups. Primary moult duration was 10 (FCP) and 24 (SCP) days longer in males than in females, and, within sex, 34 (females) and 48 (males) days longer in SCP birds than in FCP ones. Females renewed a larger number of primaries simultaneously (5.7% in FCP and 12.8% in SCP) and had a higher total daily feather mass grown (9.9% in FCP and 22.4% in SCP), even though daily growth rates of individual primaries did not differ between sexes. As a result, males and females completed their primary moult at the same time within treatment. The observed differences in timing, duration and energy allocation for primary moult between the sexes probably have a genetic basis, as birds did not engage in reproduction during the preceding breeding season.  相似文献   

16.
To understand how a large soaring bird, the White Stork Ciconia ciconia , copes with energy constraints, we compared changes in body mass in 14 captive adult storks with the body composition of 12 free-ranging adult storks found dead from accidents. The captive storks, already in an enclosure for several years, were fed ad libitum . They were weighed daily for 1.53.5 years using an automatic device. The bodies of the accidentally killed storks were analysed to determine total water, lipid, protein and ash contents, and to assess the biochemical composition of certain organs. Females were on average 20% lighter and 24% smaller than males, but the body mass of the sexes varied in parallel throughout the year. Body mass peaked in December and January (2530% above minimal body mass), due essentially to large fat stores in subcutaneous and abdominal adipose tissues. Body mass and body lipid rapidly decreased from February to June, whether the storks reared chicks successfully or not, and remained minimal for a few days into July. In contrast to birds using flapping flight, no variation in body protein or pectoral muscle protein was observed while breeding, even though the moult occurred then, nor in August, before the time when wild storks migrate. An endogenous regulation of body fuels is discussed.  相似文献   

17.
The Willow Warbler Phylloscopus trochilus is one of the few bird species that undergoes two primary moults a year, a post-nuptial moult in the breeding area and a moult in the wintering area. Primary-moult data for Willow Warblers from Finland, Sweden, Britain, the Netherlands, Belgium. Guinea-Bissau, Uganda, Kenya, Malawi, Zambia, Zimbabwe, Botswana and South Africa are analysed. The parameters of primary moult (mean starting date, standard deviation of starting date, and duration) are estimated using the techniques of Underhill & Zucchini (T.988 Ibis 1 30: 358–372) and Underhill, Zucchini & Summers (1990 Ibis 132: 118-12 3). The scheduling of moult in relation to theother main components of the annual cycle, breeding and migration, is considered. The mean durations of post-nuptial moult for P. t. trochilus and P. t. acredula are 36.5 and 38.3 days, respectively; the start and termination of moult for P. t. trochilus are about 3.5 days later for each degree of latitude northwards, and the start and termination of moult for P. t. acredula, are about 10 days later than that of the most northerly populations of P. t. trochilus studied. Females start their postnuptial moult about 10 days later than males. Southward migration commences as soon as post-nuptial moult is complete. There is an increasing constraint on the timing of breeding and post-nuptial moult events at higher latitudes, leading to overlap between them. The duration of pre-nuptial moult is longer than that of post-nuptial moult, and is completed shortly prior to northward migration.  相似文献   

18.
Sequence, rate and duration of moult were studied in captive bred European Quail Coturnix coturnix coturnix. The founder population originated from southwest France. The study was conducted between 1986 and 1989 on birds aged from 1 day to 2 years, exposed to a seasonal photoperiod corresponding to latitude 16°N during autumn and winter and latitude 48°N during the remainder of the year. Under these conditions, adult quail showed two annual moults with only the post-breeding one being complete. The pre-breeding moult essentially involved the throat feathers. Large interindividual variation was observed in the duration, timing and development of the post-breeding moult: 60% of the studied birds suspended moult when they developed migratory restlessness and then finished renewing their feathers during the winter. The post-juvenile moult was also suspended when 7–9 weeks old (3–6 primaries and 1–10 secondaries renewed). After this suspension, the length of which was related to the hatching date, the moult continued up to p7. The three outer primaries were kept for the first year and were replaced only during the post-breeding moult. Based on the examination of wing patterns, our study provides reliable criteria for discriminating between age classes. The numbers of primaries and secondaries simultaneously in growth or renewed were different between the age classes. The secondaries of adults were renewed later in the moult stage than were the secondaries of juveniles. These criteria provide field researchers with a guide that enables them to age quail with reasonable accuracy.  相似文献   

19.
R. Hallack 《Ostrich》2013,84(3):180-181
Brown, C. R. 1986. Feather growth, mass loss and duration of moult in Macaroni and Rockhopper Penguins. Ostrich 57:180-184.

The development of new feathers, loss of body mass and the duration of moult were investigated in Macaroni Penguins Eudyptes chrysolophus and Rockhopper Penguins E. chrysocome at Marion Island, southern Indian Ocean. New feathers began developing under the skin before the birds returned ashore to moult, and only began protruding through the skin about five days later when they were already over half their final length. Feather synthesis was complete by 21 days after the birds returned ashore. Loss of body mass was similar to previous observations for the species, but previous reports on the duration of moult do not take into account that moult begins while the birds are still at sea.  相似文献   

20.
Capsule: Most Continental Black-tailed Godwits Limosa limosa limosa using the Doñana wetlands during post-breeding migration appear to begin moult before they arrive and suspend moult before they migrate onwards to West Africa.

Aims: We aim to describe the primary moult strategies and patterns in the Continental Black-tailed Godwits using the Doñana wetlands, a major passage and wintering area for waterbirds in southern Spain.

Methods: Individual godwits were captured, marked and their primary moult was scored in Doñana during the non-breeding season (June–March) in 2011 and 2012. Data from resightings of colour-marked godwits and birds equipped with satellite transmitters were used to estimate stopover duration during post-breeding migration (June–September) to determine if godwits move to West Africa before completing their primary moult.

Results: Average primary moult duration was estimated to be 84 days?±?9 se, during 29 June–21 September and did not differ between sexes. Only 2% of individuals were observed with suspended moult. We estimated stopover duration in Doñana to be 13 days?±?2 se before migrating to West Africa.

Conclusions: Most godwits stage for about two weeks in the Doñana wetlands during southward migration, moult their primaries and appear to suspend moult before crossing the Sahara. Others may complete their primary moult in Doñana, or elsewhere in Europe and overwinter in Doñana where increasing numbers of godwits have been detected in recent years. A few individuals may finish the moult in Doñana and migrate to West Africa late in the post-breeding season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号