首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuroglobin (Ngb) is a small globular protein that binds diatomic ligands like oxygen, carbon monoxide (CO) and nitric oxide at a heme prosthetic group. We have performed FTIR spectroscopy in the infrared stretching bands of CO and flash photolysis with monitoring in the electronic heme absorption bands to investigate structural heterogeneity at the active site of Ngb and its effects on CO binding and migration at cryogenic temperatures. Four CO stretching bands were identified; they correspond to discrete conformations that differ in structural details and CO binding properties. Based on a comparison of bound-state and photoproduct IR spectra of the wild-type protein, Ngb distal pocket mutants and myoglobin, we have provided structural interpretations of the conformations associated with the different CO bands. We have also studied ligand migration to the primary docking site, B. Rebinding from this site is governed by very low enthalpy barriers (∼1 kJ/mol), indicating an extremely reactive heme iron. Moreover, we have observed ligand migration to a secondary docking site, C, from which CO rebinding involves higher enthalpy barriers.  相似文献   

2.
Dynamics of dioxygen and carbon monoxide binding to soybean leghemoglobin   总被引:2,自引:0,他引:2  
The association of dioxygen and carbon monoxide to soybean leghemoglobin (Lb) has been studied by laser flash photolysis at temperatures from 10 to 320 K and times from 50 ns to 100 s. Infrared spectra of the bound and the photodissociated state were investigated between 10 and 20 K. The general features of the binding process in leghemoglobin are similar to the ones found in myoglobin. Below about 200 K, the photodissociated ligands stay in the heme pocket and rebinding is not exponential in time, implying a distributed enthalpy barrier between pocket and heme. At around 300 K, ligands migrate from the solvent through the protein to the heme pocket, and a steady state is set up between the ligands in the solvent and in the heme pocket. The association rate, lambda on, is mainly controlled by the final binding step at the heme, the bond formation with the heme iron. Differences between Lb and other heme proteins show up in the details of the various steps. The faster association rate in Lb compared to sperm whale myoglobin (Mb) is due to a faster bond formation. The migration from the solvent to the heme pocket is much faster in Lb than in Mb. The low-temperature binding (B----A) and the infrared spectra of CO in the bound state A and the photodissociated state B are essentially solvent-independent in Mb, but depend strongly on solvent in Lb. These features can be correlated with the x-ray structure.  相似文献   

3.
By the electron paramagnetic resonance (EPR) technique, recovery kinetics for nitric oxide (NO) to heme following cryogenic photolysis were studied for the nitrosylferrocytochrome a3 center in cytochrome c oxidase and for myoglobin. The recovery was nonexponential, as has been observed in previous cryogenic CO and O2 rebinding to heme systems. NO rebinding to heme a3 started near a temperature of 50 K and was related to a distribution of thermal activation energies. At the peak of the distribution the activation energy was 3.1 kcal/mol, and the preexponential in the recovery rate was 10(9.9) s-1. For recovery of NO back to the a3 heme, the activation energy was threefold less than that for CO where CO binds to nearby Cua3 following photolysis from heme a3, but was larger than the activation energy for CO, O2, and probably NO rebinding to myoglobin. NO ligand rebinding to myoglobin occurred at a temperature as low as 15 K and in a temperature regime where tunneling could occur. However, the rate of NO rebinding to myoglobin did increase with temperature in the 15-25 K range.  相似文献   

4.
Ultrafast absorption spectroscopy is used to study heme-NO recombination at room temperature in aqueous buffer on time scales where the ligand cannot leave its cage environment. While a single barrier is observed for the cage recombination of NO with heme in the absence of globin, recombination in hemoglobin and myoglobin is nonexponential. Examination of hemoglobin with and without inositol hexaphosphate points to proximal constraints as important determinants of the geminate rebinding kinetics. Molecular dynamics simulations of myoglobin and heme-imidazole subsequent to ligand dissociation were used to investigate the transient behavior of the Fe-proximal histidine coordinate and its possible involvement in geminate recombination. The calculations, in the context of the absorption measurements, are used to formulate a distinction between nonexponential rebinding that results from multiple protein conformations (substates) present at equilibrium or from nonequilibrium relaxation of the protein triggered by a perturbation such as ligand dissociation. The importance of these two processes is expected to depend on the time scale of rebinding relative to equilibrium fluctuations and nonequilibrium relaxation. Since NO rebinding occurs on the picosecond time scale of the calculated myoglobin relaxation, a time-dependent barrier is likely to be an important factor in the observed nonexponential kinetics. The general implications of the present results for ligand binding in heme proteins and its time and temperature dependence are discussed. It appears likely that, at low temperatures, inhomogeneous protein populations play an important role and that as the temperature is raised, relaxation effects become significant as well.  相似文献   

5.
Ligand binding to heme proteins: relevance of low-temperature data   总被引:8,自引:0,他引:8  
Binding of carbon monoxide to the beta chain of adult human hemoglobin has been studied by flash photolysis over the time range from about 100 ps to seconds and the temperature range from 40 to 300 K. Below about 180 K, binding occurs directly from the pocket (process I) and is nonexponential in time. Above about 180 K, some carbon monoxide molecules escape from the pocket into the protein matrix. Above about 240 K, escape into the solvent becomes measurable. Process I can be observed up to 300 K. The low-temperature data extrapolate smoothly to 300 K, proving that the results obtained below 180 K provide functionally relevant information. The experiments show again that the binding process even at physiological temperatures is regulated by the final binding step at the heme iron and that measurements at high temperatures are not sufficient to fully understand the association process.  相似文献   

6.
Ligand binding to heme proteins: connection between dynamics and function   总被引:18,自引:0,他引:18  
Ligand binding to heme proteins is studied by using flash photolysis over wide ranges in time (100 ns-1 ks) and temperature (10-320 K). Below about 200 K in 75% glycerol/water solvent, ligand rebinding occurs from the heme pocket and is nonexponential in time. The kinetics is explained by a distribution, g(H), of the enthalpic barrier of height H between the pocket and the bound state. Above 170 K rebinding slows markedly. Previously we interpreted the slowing as a "matrix process" resulting from the ligand entering the protein matrix before rebinding. Experiments on band III, an inhomogeneously broadened charge-transfer band near 760 nm (approximately 13,000 cm-1) in the photolyzed state (Mb*) of (carbonmonoxy)myoglobin (MbCO), force us to reinterpret the data. Kinetic hole-burning measurements on band III in Mb* establish a relation between the position of a homogeneous component of band III and the barrier H. Since band III is red-shifted by 116 cm-1 in Mb* compared with Mb, the relation implies that the barrier in relaxed Mb is 12 kJ/mol higher than in Mb*. The slowing of the rebinding kinetics above 170 K hence is caused by the relaxation Mb*----Mb, as suggested by Agmon and Hopfield [(1983) J. Chem. Phys. 79, 2042-2053]. This conclusion is supported by a fit to the rebinding data between 160 and 290 K which indicates that the entire distribution g(H) shifts. Above about 200 K, equilibrium fluctuations among conformational substates open pathways for the ligands through the protein matrix and also narrow the rate distribution. The protein relaxations and fluctuations are nonexponential in time and non-Arrhenius in temperature, suggesting a collective nature for these protein motions. The relaxation Mb*----Mb is essentially independent of the solvent viscosity, implying that this motion involves internal parts of the protein. The protein fluctuations responsible for the opening of the pathways, however, depend strongly on the solvent viscosity, suggesting that a large part of the protein participates. While the detailed studies concern MbCO, similar data have been obtained for MbO2 and CO binding to the beta chains of human hemoglobin and hemoglobin Zürich. The results show that protein dynamics is essential for protein function and that the association coefficient for binding from the solvent at physiological temperatures in all these heme proteins is governed by the barrier at the heme.  相似文献   

7.
Recombination of carbon monoxide to myoglobin mutants YQR and YQRF was studied using transient infrared absorption spectroscopy and Fourier transform infrared-temperature derivative spectroscopy (FTIR-TDS). Photoproduct states B, C', C" and D associated with ligands residing in different protein cavities have been identified. After photolysis, ligands migrate to primary docking site B and subsequently rebind or escape to a secondary site (C) within the Xe4 cavity. For YQR, a global analysis of the isothermal rebinding kinetics below 160 K and the TDS data reveal a correlation between the enthalpy barriers governing the two processes. Above 120 K, a protein conformational change in both YQR and YQRF converts photoproduct C' into C" with markedly slowed kinetics. Above approximately 180 K, ligands migrate to the proximal Xe1 site (D) and also exit into the solvent, from where they rebind in a bimolecular reaction.  相似文献   

8.
9.
Journal of Biological Physics - Hans Frauenfelder’s discovery of conformational substates in studies of myoglobin carbon monoxide geminate rebinding kinetics at cryogenic temperatures (Austin...  相似文献   

10.
In this work we show that ligand migration and active site conformational relaxation can occur independently of each other in hemoproteins. The complicated kinetics of carbon monoxide rebinding with cytochrome P450cam display up to five distinct processes between 77 K and 300 K. They were disentangled by using a combination of three approaches: 1), the competition of the ligand with xenon for the occupation of internal protein cavities; 2), the modulation of the amount of distal steric hindrance within the heme pocket by varying the nature of the substrate; and 3), molecular mechanics calculations to support the proposed heme-substrate relaxation mechanism and to seek internal cavities. In cytochrome P450cam, active site conformational relaxation results from the displacement of the substrate toward the heme center upon photodissociation of the ligand. It is responsible for the long, puzzling bimodal nature of the rebinding kinetics observed down to 77 K. The relaxation rate is strongly substrate-dependent. Ligand migration is slower and is observed only above 135 K. Migration and return rates are independent of the substrate.  相似文献   

11.
In the spectral region 350-800 nm at 4.2 K we measured magnetic circular dichroism (MCD) spectra of the pentacoordinated complex of protcheme with 2-methylimidazole, deoxyleghemoglobin, neutral and alkaline forms of reduced horseradish peroxidase in the equilibrium states, as well as in non-equilibrium states produced by low-temperature photolysis of their carbon monoxide derivatives. Earlier the corresponding results have been obtained for myoglobin, hemoglobin and cytochromes P-450 and P-420. The energies of Fe-N (proximal His) and Fe-N(pyrroles) bonds and their changes upon ligand binding in heme proteins and enzymes were compared with those in the model heme complex thus providing conformational contribution into stereochemistry of the active site. The examples of weak and strong conformational "pressure" on stereochemistry were analysed and observed. If conformational energy contribution into stereochemistry prevails the electronic one the heme stereochemistry remains unchanged on ligand binding as it was observed for leghemoglobin and alkaline horseradish peroxidase. The change of bond energies in myoglobin and hemoglobin on ligand binding are comparable with those in protein free pentacoordinated protoheme, giving an example of weak conformational contribution to heme stereochemistry. The role of protein conformation energy in the modulation of ligand binding properties of heme in leghemoglobin relative to those in myoglobins is discussed. The most striking result were obtained in the study of reduced horseradish peroxidase in the pH region of 6.0-10.2. It was found that such different perturbations as ligand binding and heme-linked ionization of the distal amino acid residue induce identical changes in heme stereochemistry. Neither heme-linked ionization in the carbon monoxide complex nor the geometry of Fe-Co bond affect the heme local structure of photoproducts. These and other findings suggest a very low conformation mobility of horseradish peroxidase whose protein constraints appear to allow only two preferable geometries of specific amino acid residues that form the heme pocket. The role of the two tertiary structure constraints on the heme in the mechanism of horseradish peroxidase function is discussed. It is supposed that one conformation produces a heme environment suitable for two-electron oxidation of the native enzyme to compound I by hydrogen peroxide while another conformation changes the heme stereochemistry in the direction favourable for back reduction of compound I by the substrate to the resting enzyme through two one-electron steps. The switch from one tertiary structure to another is expected to be induced by substrate bind  相似文献   

12.
The maximum entropy method (MEM) is used to numerically invert the kinetics of ligand rebinding at low temperatures to obtain the underlying two-dimensional distribution of activation enthalpies and entropies, g(H,S). A global analysis of the rebinding of carbon monoxide (CO) to myoglobin (Mb), monitored in the Soret band at temperatures from 60 to 150 K, is performed using a Newton-Raphson optimization algorithm. The MEM approach describes the data much better than traditional least-squares analyses, reducing chi 2 by an order of magnitude. The MEM resolves two barrier distributions suggestive of rebinding to different bound conformations of MbCO, the so-called A1 and A3 substates, whose activation barriers have been independently estimated from kinetics monitored in the infrared. The distribution corresponding to A3 possesses higher activation entropies, also consistent with infrared measurements. Within an A substate, correlations of S and H are recovered qualitatively from simulated data but can be difficult to obtain from experimental data. When the rebinding measured at 60 K is excluded from the inversion, two peaks are no longer clearly resolved. Thus, data of very high quality are required to unambiguously determine the kinetic resolvability of subpopulations and the shape of the barrier distribution for a single A substate.  相似文献   

13.
Band III is a near-infrared electronic transition at ~13,000 cm(-1) in heme proteins that has been studied extensively as a marker of protein conformational relaxation after photodissociation of the heme-bound ligand. To examine the influence of the heme pocket structure and ligand dynamics on band III, we have studied carbon monoxide recombination in a variety of myoglobin mutants after photolysis at 3 K using Fourier transform infrared temperature-derivative spectroscopy with monitoring in three spectral ranges, (1) band III, the mid-infrared region of (2) the heme-bound CO, and (3) the photodissociated CO. Here we present data on mutant myoglobins V68F and L29W, which both exhibit pronounced ligand movements at low temperature. From spectral and kinetic analyses in the mid-infrared, a small number of photoproduct populations can be distinguished, differing in their distal heme pocket conformations and/or CO locations. We have decomposed band III into its individual photoproduct contributions. Each photoproduct state exhibits a different "kinetic hole-burning" (KHB) effect, a coupling of the activation enthalpy for rebinding to the position of band III. The analysis reveals that the heme pocket structure and the photodissociated CO markedly affect the band III transition. A strong kinetic hole-burning effect results only when the CO ligand resides in the docking site on top of the heme group. Migration of CO away from the heme group leads to an overall blue shift of band III. Consequently, band III can be used as a sensitive tool to study ligand dynamics after photodissociation in heme proteins.  相似文献   

14.
The influence of the heme iron coordination on nitric oxide binding dynamics was investigated for the myoglobin mutant H93G (H93G-Mb) by picosecond absorption and resonance Raman time-resolved spectroscopies. In the H93G-Mb, the glycine replacing the proximal histidine does not interact with the heme iron so that exogenous substituents like imidazole may coordinate to the iron at the proximal position. Nitrosylation of H93G-Mb leads to either 6- or 5-coordinate species depending on the imidazole concentration. At high concentrations, (imidazole)-(NO)-6-coordinate heme is formed, and the photoinduced rebinding kinetics reveal two exponential picosecond phases ( approximately 10 and approximately 100 ps) similar to those of wild type myoglobin. At low concentrations, imidazole is displaced by the trans effect leading to a (NO)-5-coordinate heme, becoming 4-coordinate immediately after photolysis as revealed from the transient Raman spectrum. In this case, NO rebinding kinetics remain bi-exponential with no change in time constant of the fast component whose amplitude increases with respect to the 6-coordinate species. Bi-exponential NO geminate rebinding in 5-coordinate H93G-Mb is in contrast with the single-exponential process reported for nitrosylated soluble guanylate cyclase (Negrerie, M., Bouzhir, L., Martin, J. L., and Liebl, U. (2001) J. Biol. Chem. 276, 46815-46821). Thus, our data show that the iron coordination state or the heme iron out-of-plane motion are not at the origin of the bi-exponential kinetics, which depends upon the protein structure, and that the 4-coordinate state favors the fast phase of NO geminate rebinding. Consequently, the heme coordination state together with the energy barriers provided by the protein structure control the dynamics and affinity for NO-binding enzymes.  相似文献   

15.
Tetreau C  Tourbez M  Lavalette D 《Biochemistry》2000,39(46):14219-14231
Photodissociation of (CO)P-450(cam)(substrate) complexes was found to trigger a conformational relaxation process that interferes with ligand rebinding at temperatures as low as 140 K even though the protein conformational substates (CS(1)) remain frozen. To analyze the rebinding and relaxation kinetics, we developed a model that takes the distribution of relaxation rates explicitly into account and in which rebinding and relaxation rates are connected by a linear free energy relation. In all complexes heme relaxation occurs first and is probably faster than 100 ns even at 77 K. This is the only process found in substrate-free P-450(cam). Above 140 K and in the presence of a substrate, this initial, fast rebinding state (P) progressively relaxes to another state (P degrees ) in which rebinding is slower. The relaxation rate is independent of solvent rigidity and is governed by the protein's internal dynamics. Rebinding enthalpies in P and P degrees as well as the enthalpy shift brought about by relaxation correlate with the substrate propensity to block access to the iron site. In P degrees the barrier is higher because the substrate is closer to the heme normal and exerts more steric repulsion for CO binding. The relaxation process implies the return of substrate and heme to their ligand-free positions in which access to the heme is reduced.  相似文献   

16.
Laser flash photolysis technique was used to study zinc and cadmium ion effects on bimolecular and nanosecond geminate molecular oxygen (O(2)) rebinding to horse heart myoglobin. Time courses for geminate recombination are analyzed in terms of a three-step, side path model. In the presence of metal ions, the greatest changes are observed in the rate constant of the O(2) rebinding from within the primary docking site and the rate constant of the O(2) migration from the primary site to the secondary xenon docking sites. The study revealed that modulation of the myoglobin affinity for O(2) by zinc and cadmium occurs at the level of the innermost barrier controlling O(2) rebinding from within the primary docking site. Sets of the calculated rate constants provide a basis for an interpretation of metal ion effects on the myoglobin structure. Overall, the results demonstrate that the metal ions binding to myoglobin gives rise to an increase in the population of the "open" distal pocket protein conformation.  相似文献   

17.
Carbon monoxide binding to myoglobin was characterized using the photothermal beam deflection method. The volume and enthalpy changes coupled to CO dissociation were found to be 9.3+/-0.8 mL x mol(-1) and 7.4+/-2.8 kcal x mol(-1), respectively. The corresponding values observed for CO rebinding have the same magnitude but opposite sign: Delta V=-8.6+/-0.9 mL x mol(-1) and Delta H=-5.8+/-2.9 kcal x mol(-1). Ligand rebinding occurs as a single conformational step with a rate constant of 5 x 10(5) M(-1) s(-1) and with activation enthalpy of 7.1+/-0.8 kcal x mol(-1) and activation entropy of -22.4+/-2.8 cal x mol(-1) K(-1). Activation parameters for the ligand binding correspond to the activation parameters previously obtained using the transient absorption methods. Hence, at room temperature the CO binding to Mb can be described as a two-state model and the observed volume contraction occurs during CO-Fe bond formation. Comparing these results with CO dissociation reactions, for which two discrete intermediates were characterized, indicates differences in mechanism by which the protein modulates ligand association and dissociation.  相似文献   

18.
We have used sol-gel encapsulation protocols to trap kinetically and spectroscopically distinct conformational populations of native horse carbonmonoxy myoglobin. The method allows for direct comparison of functional and spectroscopic properties of equilibrium and non-equilibrium populations under the same temperature and viscosity conditions. The results implicate tertiary structure changes that include the proximal heme environment in the mechanism for population-specific differences in the observed rebinding kinetics. Differences in the resonance Raman frequency of nu(Fe-His), the iron-proximal histidine stretching mode, are attributed to differences in the positioning of the F helix. For myoglobin, the degree of separation between the F helix and the heme is assigned as the conformational coordinate that modulates both this frequency and the innermost barrier controlling CO rebinding. A comparison with the behavior of encapsulated derivatives of human adult hemoglobin indicates that these CO binding-induced conformational changes are qualitatively similar to the tertiary changes that occur within both the R and T quaternary states. Protein-specific differences in the time scale for the proposed F helix relaxation are attributed to variations in the intra-helical hydrogen bonding patterns that help stabilize the position of the F helix.  相似文献   

19.
Using fast flash photolysis, we have measured the binding of CO to carboxymethylated cytochrome c and to heme c octapeptide as a function of temperature (5 degrees-350 degreesK) over an extended time range (100 ns(-1) ks). Experiments used a microsecond dye laser (lambda = 540 nm), and a mode-locked frequency-doubled Nd-glass laser (lambda = 530 nm). At low temperatures (5 degrees-120 degreesK) the rebinding exhibits two components. The slower component (I) is nonexponential in time and has an optical spectrum corresponding to rebiding from an S = 2, CO-free deoxy state. The fast component (I*) is exponential in time with a lifetime shorter than 10 mus and an optical spectrum different from the slow component. In myoglobin and the separated alpha and beta chains of hemoglobin, only process I is visible. The optical absorption spectrum of I* and its time dependence suggest that it may correspond to recombination from an excited state in which the iron has not yet moved out of the heme plane. The temperature dependences of both processes have been measured. Both occur via quantum mechanical tunneling at the lowest temperatures and via over-the-barrier motion at higher temperatures.  相似文献   

20.
Phase-sensitive two-dimensional NMR methods have been used to obtain extensive proton resonance assignments for the carbon monoxide complexes of lupin leghemoglobins I and II and soybean leghemoglobin a. The assigned resonances provide information on the solution conformations of the proteins, particularly in the vicinity of the heme. The structure of the CO complex of lupin leghemoglobin II in solution is compared with the X-ray crystal structure of the cyanide complex by comparison of observed and calculated ring current shifts. The structures are generally very similar but significant differences are observed for the ligand contact residues, Phe30, His63 and Val67, and for the proximal His97 ligand. Certain residues are disordered and adopt two interconverting conformations in lupin leghemoglobin II in solution. The proximal heme pocket structure is closely conserved in the lupin leghemoglobins I and II but small differences in conformation in the distal heme pocket are apparent. Larger conformational differences are observed when comparisons are made with the CO complex of soybean leghemoglobin. Altered protein-heme packing is indicated on the proximal side of the heme and some conformational differences are evident in the distal heme pocket. The small conformational differences between the three leghemoglobins probably contribute to the known differences in their O2 and CO association and dissociation kinetics. The heme pocket conformations of the three leghemoglobins are more closely related to each other than to sperm whale myoglobin. The most notable differences between the leghemoglobins and myoglobin are: (a) reduced steric crowding of the ligand binding site in the leghemoglobins, (b) different orientations of the distal histidine, and (c) small but significant differences in proximal histidine coordination geometry. These changes probably contribute to the large differences in ligand binding kinetics between the leghemoglobins and myoglobin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号