首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim We investigate the phylogeographical history and determine the time‐scale of population divergence of hydrobiid freshwater snails (genus Trochidrobia) inhabiting groundwater springs in the Australian desert. We test the hypothesis that divergence between geographically distinct snail populations occurred simultaneously due to their isolation in hydrologically discrete spring systems, i.e. ‘trapped in desert springs’. Location Groundwater springs of the Great Artesian Basin (GAB) in central Australia. Methods DNA sequence data from the mitochondrial cytochrome c oxidase subunit I gene and the nuclear 28S and internal transcribed spacer rRNA genes were used to reconstruct phylogenetic relationships within and among three species of Trochidrobia (Hydrobiidae): T. punicea (13 spring groups, n = 90), T. smithi (12 spring groups, n = 62) and T. minuta (2 spring groups, n = 4). Bayesian relaxed molecular clock analyses and approximate Bayesian computation were used to date lineage divergence and distinguish between alternative biogeographical scenarios. Results The diversification of the three Trochidrobia species probably occurred between 2.54 and 9.3 Ma, prior to the formation of the springs c. 1 Ma. Intraspecific divergences within the two widespread species occurred after the formation and colonization of the springs. Coalescent modelling and molecular clock analyses supported a simultaneous radiation of five allopatric intraspecific snail lineages within T. punicea (two lineages) and T. smithi (three lineages) across the GAB springs examined. Main conclusions The analyses support the ‘trapped in desert springs’ hypothesis for the diversification of intraspecific lineages within the species T. punicea and T. smithi. This hypothesis suggests that the formation of deserts around Lake Eyre in the early Pleistocene led to the hydrological isolation of spring complexes in the GAB, resulting in significant molecular divergence, but no morphological divergence, of Trochidrobia snail populations.  相似文献   

2.
We identified and characterized nine microsatellite primer pairs from Fonscochlea accepta, a species of hydrobiid snail endemic to artesian mound springs associated with the Great Artesian Basin in arid South Australia. The loci were highly polymorphic, with five to 30 alleles per locus. Gene diversity, estimated as expected heterozygosity ranged from 0.364 to 0.851, and was generally matched by levels of observed heterozygosity (0.373–0.829). Cross‐species amplification trials with four other hydrobiid species associated with these southern mound springs showed that these primers will be useful for genetic analyses of these other endemic snails.  相似文献   

3.
During the Pleistocene, when the climate was wetter and cooler, aquatic habitats in the Great Basin of western North America were much more extensive and connected. As the climate warmed over the last 10000 years, many of these habitats dried but others remained as isolated springs and inland lakes. The isolation of desert springs and lack of dispersal between populations of non-vagile species (e.g. fish, spring snails) has led to genetic differentiation and speciation. However, the extent to which vagile species of aquatic insects disperse from spring to spring is unknown. We examined the population genetics of two caddisflies, Hesperophylax designatus (Limnephilidae) and Lepidostoma ojanum (Lepidostomatidae) that occur in isolated springs in Nevada and eastern California to determine the extent of their dispersal from spring to spring. Mitochondrial DNA sequences indicate that the populations of L. ojanum are isolated and that the populations represent management units. In contrast, H. designatus individuals are flying from spring to spring and their populations are connected by dispersal. Disturbance impacts (e.g. grazing by ungulates, water extraction) that eliminate poor dispersers (e.g. L. ojanum) locally may result in permanent losses of genetic diversity; this is less likely with broader dispersers such as H. designatus.  相似文献   

4.
Fire can often occur in aquatic ecosystems, which may affect aquatic invertebrates. Despite the importance of aquatic invertebrates to ecosystem function, the effect of fire on these environments has been little studied. We studied the effects of fire on aquatic invertebrates in artesian springs in the arid zone of South Australia. Artesian springs are a unique and threatened ecosystem, containing several rare and endemic species. Evidence suggests these wetlands were routinely burnt by indigenous Aboriginal people before European settlement over 100 years ago. Recently, burning has been suggested as a reinstated management tool to control the dominant reed Phragmites australis. A reduction in the cover of the reed may benefit the threatened flora and fauna through enhancement of water flow. Three artesian springs were burnt and aquatic invertebrates sampled from the burnt and three unburnt springs. A single fire in late winter completely burnt the dominant vegetation, followed by recovery of Phragmites over the following 2 years. A single fire event did not deplete populations of endemic aquatic invertebrates in artesian springs, but probably did not substantially benefit these populations either. Isopods, amphipods, ostracods and three species of hydrobiid snail survived the fire event, and most had increased in number 1 month post fire but then returned to pre‐burnt numbers by 1 year post fire. Morphospecies richness of all identified invertebrates increased over time in all springs, but did not differ appreciably between burnt and unburnt springs. If burning artesian springs is to be adopted as a management tool to suppress the growth of Phragmites australis, we conclude that the endemic aquatic invertebrates will survive a single burn event, without negative effect to their populations.  相似文献   

5.
Naturally patchy ecosystems are models for other systems currently undergoing anthropogenic habitat fragmentation. Understanding patterns of gene flow in these model systems can help us manage species and ecosystems threatened by human impacts. The mound springs of central Australia represent such a natural model ecosystem, supporting a unique aquatic fauna distributed within an inhospitable arid landscape. Moreover, these springs are being impacted by over extraction of groundwater, providing a unique opportunity to look at dispersal in a patchy habitat that is changing. The present study represents the first fine scale analysis of gene flow under different scenarios of habitat connectivity for the endangered mound spring snail, Fonscochlea accepta. Within a single spring group pairwise estimates of F ST between springs were very low (ave 0.015) with no association found between genetic distance and a series of geographical distance matrices based on the degree of habitat connectivity among the springs: results implying unstructured dispersal and limited population isolation. However, results from Bayesian assignment tests showed that on average approximately 97% of snails were assigned to their spring of origin. In a preliminary analysis at broader geographic scales (among spring groups) the results from F ST estimates, Mantel correlation analyses and assignment tests all suggest much stronger and geographically correlated population structuring. While varying results from F-statistics and Bayesian analyses stem from the different information they utilise, together they provide data on contemporary and historical estimates of gene flow and the influence of landscape dynamics on the spatial genetic patterning of the springs.  相似文献   

6.
Benthic macroinvertebrate communities were studied and environmental variables were measured in six rheocrene springs in Cantabria, northern Spain. Principal component analysis revealed two different spring types according to their physical and chemical characteristics. Springs from group A (GA) had higher temperature and conductivity, while springs in group B (GB) had higher values of pH, altitude, mean water velocity, percentage of boulders and coarse particulate organic matter. Total number of invertebrate taxa and individuals were not different between GA and GB springs. However, Shannon diversity index was significantly higher for GB springs. Analysis of similarities (ANOSIM) and non-metric multidimensional scaling (NMDS) analysis indicated that invertebrate assemblages from GA and GB springs were different. The snails Theodoxus fluviatilis and Bythinella sp., and the amphipod Echinogammarus spp. had higher densities in GA springs, whereas ephemeropterans, plecopterans, trichopterans and chironomids were more important in GB springs. Higher water velocities in GB springs interacting with predation by Echinogammarus tarraconensis may be responsible for the observed patterns on invertebrate community structure and composition. The taxonomic resolution limited our ability to detect crenobiontic taxa. Sampling aquatic, semi-aquatic and semi-terrestrial habitats are needed to account for the biodiversity patterns of spring habitats.  相似文献   

7.
Refugia play a critical role in preserving species unable to move or adapt to cope with environmental change. The role of refugia as ‘museums of diversity’ means these environments have a high conservation priority. Less well known, however, is the role that isolated and fragmented refugia can play in the generation of new diversity. Here, we examined the diversification and evolutionary history of a community of endemic invertebrates that inhabit Australian desert spring refugia. We compared the phylogenies of seven endemic groups (Haloniscus and Phreatomerus isopods, chiltoniid amphipods, Ngarawa ostracods, Trochidrobia and Fonscochlea snails and Gymnochthebius beetles) from these springs and examine the rates and timing of diversification and reconstructed the phylogeographic history of each taxon. Despite major life‐history differences among these taxa, they demonstrate remarkable similarities in their evolutionary histories. All groups have multiple lineages that extend back to a time before the formation of present‐day deserts, and significant geographic‐based diversification since adapting to a refugial habitat. The results provide further evidence that refugia act as museums of biodiversity, preserving lineages that would have otherwise gone extinct. However, we also observed that isolation in refugia corresponds with significant diversification, leading to a recently evolved, novel endemic fauna, supporting the idea that fragmented refugia provide ideal conditions for the generation of future biodiversity hotspots.  相似文献   

8.
Many organisms occupy heterogeneous landscapes that contain both barriers to movement as well as corridors that facilitate dispersal. The extent to which such features determine population connectivity will depend on the mechanisms utilized by organisms to disperse. Here we examined the interaction between landscape structure and dispersal in the endemic aquatic snail, Fonscochlea accepta , in the fragmented artesian spring ecosystem of arid central Australia. We used frequentist and Bayesian analyses of microsatellite data to identify population structure and immigration for 1130 snails sampled from 50 springs across an entire spring complex. We introduce a modified isolation-by-distance analysis to test hypotheses about how populations are clustered and to distinguish the most likely dispersal pathways within and between those clusters. Highly significant differences in F ST values and significant isolation-by-distance patterns were detected among springs across the entire complex, while Bayesian assignment tests revealed the presence of two hierarchical levels of spring clustering. Clusters were defined by the spatial aggregation of springs, dynamic aquatic habitat connections between springs and the ecology of the snails. Bayesian immigrant identification and our modified isolation-by-distance analysis revealed that dispersal occurs at two geographical scales via two very different mechanisms. Short range dispersal (usually ≤ 300 m) occurs via active movement facilitated by aquatic connections among springs while long-range dispersal (≥ 3 km) is likely facilitated by an animal vector (phoresy). These results underline the importance of both dispersal mode and landscape structure in influencing connectivity rates and patterns among populations.  相似文献   

9.
The Great Artesian Basin (GAB) of Australia underlies some of the driest parts of South Australia and Queensland and feeds numerous freshwater springs. Prominent and endangered components of the GAB spring community are snails of the family Hydrobiidae. This paper examines the evolutionary relationships of the entire hydrobiid fauna associated with the GAB, and includes appropriate non-GAB species to place the GAB fauna in a broader phylogenetic context. The Queensland genus Jardinella is a focus of this paper, providing a fine scale examination of relationships between spring supergroups in the northeastern regions of the GAB. Maximum parsimony and Bayesian analyses performed on 16S, CO1, and combined sequence data from 40 hydrobiid taxa found four major clades of Australian taxa. The analysis revealed that at least three separate colonization events of the GAB spring fauna have occurred. Two of these are represented by considerable radiations, (1) Jardinella to the north and east and (2) Caldicochlea, Fonscochlea, and possibly Trochidrobia in South Australia. The phylogenetic position of the latter is uncertain so it may represent yet another invasion. The third definite invasion is represented by a single species of the speciose SE Australian genus Austropyrgus in the Dalhousie Springs in South Australia. Jardinella is found to be monophyletic, and with one exception, its members in each of the Queensland spring supergroups are found to be monophyletic.  相似文献   

10.
Direct development and water dependence entail limited vagility in freshwater fauna. In these organisms, the population structure is probably linked to restrictions imposed by the habitat. In this study we investigate the relative contribution of processes stimulating the divergence of populations of Biomphalaria costata (Biese, 1951) and Biomphalaria crequii (Courty, 1907), two freshwater snails occurring in two contiguous and fragmented closed basins from the Andean Altiplano using mitochondrial DNA (cytochrome c oxidase subunit I) sequences, shell morphometric and radular morphology. In order to clarify the species boundaries, a third allopatric species was included: Biomphalaria aymara Valdovinos & Stuardo, 1991. Molecular analyses recovered two distinct clades: one composed of B. aymara from the Isluga swamps and B. costata from Spring 1 in Salar de Carcote, the single spring occupied by this species, and another integrated by snails from 12 springs spread across the Salar de Carcote and the Salar de Ascotán assigned to B. crequii, originally described from the Salar de Ascotán. Unlike shell morphometrics, radular morphology was informative for distinguishing these species. The division of the lineages occurred in the Late Pleistocene. A subclade that includes snails from the southernmost springs in Salar de Ascotán suggests fragmentation of the distribution of B. crequii associated with landscape discontinuities. In addition to microvicariance signals, the private haplotypes scattered around both salt spans show that close‐range dispersal is a common biogeographic process in this species. As evolutionary units, the single isolated and restricted population of B. costata has a high priority for conservation. © 2013 The Linnean Society of London  相似文献   

11.
Phylogenetic analysis based on a partial sequence of the mitochondrial cytochrome c oxidase subunit I gene was performed for 26 representatives of the aquatic gastropod subfamily Cochliopinae, 6 additional members of the family Hydrobiidae, and outgroup species of the families Rissoidae and Pomatiopsidae. Maximum-parsimony analysis yielded a single shortest tree which resolved two monophyletic groups: (1) a clade containing all cochliopine taxa with the exception of Antroselates and (2) a clade composed of Antroselates and the hydrobiid genus Amnicola. The clade containing both of these monophyletic groups was depicted as more closely related to members of the family Pomatiopsidae than to other hydrobiid snails which were basally positioned in our topology. New anatomical evidence supports recognition of the cochliopine and Antroselates-Amnicola clades, and structure within the monophyletic group of cochliopines is largely congruent with genitalic characters. However, the close relationship between the Pomatiopsidae and these clades is in conflict with commonly accepted classifications and suggests that a widely accepted scenario for genitalic evolution in these snails is in need of further study.  相似文献   

12.
The ionic composition of 38 mineral springs in the province of Granada (Spain), and the distribution of 45 species of nematodes belonging to orders Monhysterida, Araeolaimida, Chromadorida and Enoplida were examined. Water chemistry is used to make two diagrams representing anionic and cationic composition. Diagrams for anionic composition (given the greater variance seen in the springs considered) are used to illustrate the distribution of individual species. The results obtained from species distribution and the correlation between species made it possible to group species which could be associated with springs where each of the anions considered predominated. A greater number of species groups was found to inhabit springs in which chloride concentrations was less than 50% of the total concentration of anions.  相似文献   

13.
Plant communities were examined in ponds in Brittany (north-west France) and then classified into six types reflecting different trophic levels: oligotrophic, oligodystrophic, mesotrophic, meso-dystrophic, meso-eutrophic an eutrophic. In 45 of these ponds, aquatic snails were sampled in order to determine the relationship between the gastropod species richness and the water trophic levels as indicated by plant community types. The second aim of this study was to determine whether some gastropod species were characteristic of a particular trophic level. The number of plant communities in the ponds was also taken into consideration.A trophic gradient was found along the F1 axis on the principal plane of the correspondence analyses. The species richnesses low or zero and especially the lymneid, Lymnaea glabra were close to the oligo-dystrophic and oligotrophic communities. In contrast, the highest numbers of snail species (5 and above) were found in the most eutrophic ponds where Hippeutis complanatus, Planorbis planorbis, Lymnaea stagnalis and Planorbarius corneus were particularly common. The latter species inhabited the ponds including on average the greatest number of macrophyte communities but no significant differences were found between snail species. The ponds which contained the greatest numbers of plant communities included the richest gastropod communities (7 and more) but also the poorest ones (0 or 1 species). Relationships between freshwater snails, macrophytes and trophic levels are discussed.Laboratoire de Zoologie et d'Ecophysiologie  相似文献   

14.
We examined the patterns of distribution, vectors of introduction, and potential ecological impacts of freshwater exotic species in Texas over the last 45 years. Currently, five species of exotic gastropods are established: channeled-type applesnail (Pomacea insularum), red-rim melania (Melanoides tuberculatus), quilted melania (Tarebia granifera), giant rams-horn snail (Marisa cornuarietis), and Chinese mysterysnail (Cipangopaludina chinensis). In contrast to the northern part of the US, where shipping appears to be the most important vector for the introduction of aquatic invasive species, aquarium and ornamental trade dominated among unintentional vectors of introduction of all freshwater exotics in Texas, resulting in different patterns of distribution, spread, and ecological impacts. The rate of spread of exotic gastropods in Texas varied from 39 waterbodies colonized over 18 years for P. insularum to only three waterbodies during last 45 years for C. chinensis. Four of five exotic gastropods were found in highly vulnerable aquifer-fed springs and rivers, which contain numerous endemic and endangered species. The fifth species, Pomacea insularum, is an agricultural pest. Potential negative ecological effects of exotic gastropods include impacts on wetlands and wetland restoration, competitive exclusion of native snails, and the introduction of exotic parasites, trematodes, which could infect fish and waterfowl, including federally protected species. Aquifer springs with stable temperature regimes are refuges for both cold and warm intolerant species. Handling editor: D. Dudgeon  相似文献   

15.
1. The unique aquatic fauna of the island‐like groundwater springs of arid inland Australia raises important questions as to how aquatic species persist in very isolated and fragmented habitats and the role that dispersal may play in mitigating/mediating the influence of landscape structure and determining population structure. By determining the relationship between genetics and geography (i.e. phylogeography), the historical processes responsible for population structure can be determined. 2. We undertook comparative phylogeographic studies of invertebrates from springs south of Lake Eyre. Clusters of springs lying within and between surface drainage catchments (which provide a potential connection between springs) were sampled, and the phylogeographic structure of four coexisting species, an ostracod Ngarwa dirga, a snail Fonscochlea accepta, an isopod Phreatomerus latipes and an amphipod Wangiannachiltonia guzikae, was examined. 3. Clear differences in the geographic patterns of genetic structure were found amongst the four species. No discernable genetic structure was found in ostracod and snail populations, even amongst springs lying 20 km apart in separate surface catchments; isopod populations were highly genetically structured amongst springs located in separate catchments, but not within catchments, whilst amphipod populations were highly genetically structured amongst springs both within and between catchments. 4. The results suggest that differences in dispersal ability of each species, and not the overall fragmented nature of the springs, may have led to large differences in phylogeographic history. Interestingly, the relative dispersal ability of these species may be related to their vulnerability to and recovery from large‐scale flood events. Therefore, despite the highly isolated and fragmented nature of the springs, the landscape has not strongly influenced the population structure of the aquatic invertebrate community as a whole nor has it led to the evolution of common life histories.  相似文献   

16.
For the first time, the flora of algae and aquatic lichens is studied in the sodium chloride mineral springs of the Northern Baikal region flowing from the Lower Cambrian salt-bearing formations. The full list of algae found in six springs is presented. In total, 257 taxa are identified belonging to six divisions: Cyanoprokaryota (=Cyanophyta), Euglenophyta, Bacillariophyta, Xanthophyta, Chlorophyta, and Streptophyta. The flora of diatoms is the richest (196 taxa, or 76%). The similarity of algoflora of different springs is negligible. Species that are indifferent to salinity prevail in most of the mineral springs; mesohaline species dominate in the Ust’-Kutskii spring. Nineteen taxa of halophile diatoms are identified. The marine species Percursaria percursa (Chlorophyta) is recorded in Klyuchevskoi and Ust’-Kutskii springs. In the three springs, seven lichen species from the four genera are identified, five species are truly aquatic and two species may stand flooding; all these species are found in the freshwater ponds and streams. Two species of the genus Bagliettoa are probably relict in the Baikal region.  相似文献   

17.
1. We investigated the individual and combined effects of two predators (the climbing perch, Anabas testudineus, and the wetland crab, Esanthelphusa nimoafi) indigenous to wetlands in Laos, on the behaviour and survival of the invasive South American golden apple snail (Pomacea canaliculata). The snail is considered a pest, consuming large amounts of rice and other aquatic vegetation in the region. 2. Snail avoidance reactions to released predator chemical cues were investigated in aquaria while the effects of predators on a mixed snail population were studied in field enclosures that contained native aquatic plants (Salvinia cucullata, Ludwigia adscendens and Ipomoea aquatica). 3. In the aquaria experiment, neonate (2–3 mm) and medium‐sized snails (8–10 mm) responded to fish chemical cues by going to the surface, whereas adult snails (35–40 mm) went to the bottom. In contrast, no size class of snails reacted to chemical cues released by crabs. 4. In the field experiment, fish reduced the abundance of neonate snails, and crabs reduced the abundance of all size classes. The effect of the combined predators could not be predicted from the mortality rate observed in single predator treatments. The survival of neonate and medium‐sized snails was greater and of adults less than expected. The presence of predators did not affect egg production. Snails consumed significant amounts of plants despite the presence of predators. 5. Our findings suggest that some indigenous Asian predators have lethal and sublethal effects on P. canaliculata that depend on snail size and predator type. When in the presence of several predators the response of snails to one predator may either increase or decrease the vulnerability of snails to the others.  相似文献   

18.
The “fontanili” are artificial aquatic ecosystems, typical of the lowland plains of Northern Italy, exploiting natural resurgences of deep groundwater. These habitats are characterized by low variation in hydrologic, hydrochemical and thermal conditions throughout the year. Proper management is required to prevent the spring clogging by biomass accumulation. In spite of their importance as refugia for endangered species, many springs were completely abandoned in the last years and several of them will disappear. We report the results of a study carried out in 2001 on 31 springs of the provinces of Piacenza and Parma, distributed in seven areas defined on hydrological and geological considerations. Physical and chemical variables and parameters of waters were measured and ostracod samples were collected. Most of the springs showed high nitrate concentration, due to a diffuse pollution of agricultural origin. Twelve ostracod species in four families were identified. Ostracod valves were analysed by scanning electron microscopy. Cypria ophtalmica was found in all the springs; other relatively common species were Cyclocypris laevis,Notodromas persica, and Prionocypris zenkeri.The maximum number of species per site was four. Cypridopsis vidua,P. zenkeri, and N. persicashowed a very localized distribution in the study area. The ostracod fauna of the “fontanili” was compared to other species assemblages found in spring habitats and to the available information on recent freshwater ostracods reported for Italy.  相似文献   

19.
Patterns of distribution are influenced by species environmental requirements and limits, but experimental tests are needed to discern whether correlates of abundance directly affect survival and success. Springs in Australia’s arid interior support a wide diversity of gastropods only found in springs, and these species show dichotomous patterns of distribution. “Amphibious” species are broadly distributed across many springs and microhabitats, and “aquatic” species confined to the deepest pool areas within large springs. This pattern appears to be driven by the interaction between different environmental conditions in different microhabitats and the environmental tolerances of each endemic snail species. Factorial experiments were used to test whether conditions in the environmentally extreme and variable tail area of springs (considering pH, conductivity, temperature and desiccation potential, alone and in synergistic scenarios) elicited lethal or sub-lethal responses in spring snails endemic to springs on opposite sides of the Australian arid zone. All species restricted to spring pools were able to endure 24 h exposed to the average tail conditions, alone and in combination, but most suffered mortalities when subjected to extremes, and mortalities occurred sooner in the most restricted species when elevated pH and conductivity were experienced in combination. Responses of species from different locations are similar, but pattern of distribution in the field were not correlated with tolerance of environmental extremes—with the “amphibious” species from the sub-tropics being far more sensitive than its arid counterpart. These findings suggest that environmental variance within springs can influence patterns of distribution and abundance, particularly when extremes are experienced simultaneously over sustained time periods. But despite similarities in responses across species from these two spring complexes, no simple generalisations linking distribution and tolerance were discernible.  相似文献   

20.
R. H. Britton 《Hydrobiologia》1985,122(3):219-230
The life cycle and annual production of Hydrobia acuta was studied in a hypersaline lagoon (s = 39 in summer), forming a part of solar salt works. Quantitative random samples were taken at regular intervals over a period of 15 months using a corer, and snails collected were counted and measured. Weight and biomass was calculated from a length-weight relationship and from measurements of ash content. H. acuta was a strictly annual species in the study lagoon. Recruitment takes place over a brief period in May and June, after which the breeding population dies. Growth of the new generation was slow during summer, probably due to the unfavourably high salinity. A period of rapid growth took place in autumn coinciding with a drop in salinity caused by rainfall. In winter Hydrobia hibernated by burrowing deeply into the sediment. Growth recommenced in spring when the lagoon was reflooded, but by this time the number of survivors was low.The maximum density of snails was 6 000 m–2 and maximum biomass 500 mg organic dry wt · m–2. Annual cohort production was estimated as 786 mg organic dry wt · m–2 · a–1. These figures are low compared to other studies on hydrobiid snails, and for production in inland waters, but the value for annual P/B = 4.5 is typical for a univoltine species. The relevance of the results to foraging by wading birds (the main consumers), is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号