首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nilsson J  Sengupta J  Frank J  Nissen P 《EMBO reports》2004,5(12):1137-1141
The receptor for activated C-kinase (RACK1) is a scaffold protein that is able to interact simultaneously with several signalling molecules. It binds to protein kinases and membrane-bound receptors in a regulated fashion. Interestingly, RACK1 is also a constituent of the eukaryotic ribosome, and a recent cryo-electron microscopy study localized it to the head region of the 40S subunit in the vicinity of the messenger RNA (mRNA) exit channel. RACK1 recruits activated protein kinase C to the ribosome, which leads to the stimulation of translation through the phosphorylation of initiation factor 6 and, potentially, of mRNA-associated proteins. RACK1 therefore links signal-transduction pathways directly to the ribosome, which allows translation to be regulated in response to cell stimuli. In addition, the fact that RACK1 associates with membrane-bound receptors indicates that it promotes the docking of ribosomes at sites where local translation is required, such as focal adhesions.  相似文献   

2.
The receptor for activated C-kinase (RACK1), a conserved protein implicated in numerous signaling pathways, is a stoichiometric component of eukaryotic ribosomes located on the head of the 40S ribosomal subunit. To test the hypothesis that ribosome association is central to the function of RACK1 in vivo, we determined the 2.1-Å crystal structure of RACK1 from Saccharomyces cerevisiae (Asc1p) and used it to design eight mutant versions of RACK1 to assess roles in ribosome binding and in vivo function. Conserved charged amino acids on one side of the β-propeller structure were found to confer most of the 40S subunit binding affinity, whereas an adjacent conserved and structured loop had little effect on RACK1-ribosome association. Yeast mutations that confer moderate to strong defects in ribosome binding mimic some phenotypes of a RACK1 deletion strain, including increased sensitivity to drugs affecting cell wall biosynthesis and translation elongation. Furthermore, disruption of RACK1''s position at the 40S ribosomal subunit results in the failure of the mRNA binding protein Scp160 to associate with actively translating ribosomes. These results provide the first direct evidence that RACK1 functions from the ribosome, implying a physical link between the eukaryotic ribosome and cell signaling pathways in vivo.Cells alter protein synthesis in response to stimuli whose effects are transmitted through established cell signaling pathways. Although the mechanisms of signal transduction to ribosomes remain unclear, the receptor for activated C-kinase (RACK1) has emerged as a possible molecular link that connects the signaling and translation machinery. RACK1, a highly conserved homologue of the β-subunit of heterotrimeric G proteins, was first identified over a decade ago as an anchoring protein for protein kinase C (33). Implicated as a scaffold in PDE4D5- and Src kinase-based signaling pathways (28), it functions in diverse developmental processes, such as sexual differentiation in Schizosaccharomyces pombe (29) and the control of cell proliferation in Drosophila melanogaster (26). The more recent discovery that RACK1 is a core component of the eukaryotic 40S ribosomal subunit (20, 24, 32) suggested that its signaling functions might directly influence the efficiency and specificity of translation.In support of this possibility, cryo-electron microscopy (cryo-EM) studies showed that RACK1 binds the 40S subunit near the mRNA exit tunnel in a location that is conserved from yeast to humans (35). The cryo-EM data verified RACK1''s architecture as a seven-bladed β-propeller and positioned the protein on the ribosome in such a way that much of its surface is exposed and available for interaction with other proteins and ligands. These structural data are consistent with the hypothesis that RACK1 might assemble signaling or other regulatory complexes directly on the ribosome (31). Indeed, various functions for RACK1 at the ribosome have been proposed, including roles in 40S and 60S subunit joining (8), the regulated translation of specific mRNAs (6, 36), and the localization of ribosomes for translation at specific sites within the cell (9, 10). Despite this abundance of hypothetical roles, the functional significance of RACK1 localization on the ribosome remains speculative.Here, we provide the first experimental evidence that RACK1''s position at the ribosome has biological importance in vivo. We determined the crystal structure of the full-length Saccharomyces cerevisiae RACK1 ortholog, Asc1p (henceforth RACK1), at 2.1-Å resolution. Using this structure and the cryo-EM model of the protein on the 40S ribosomal subunit, we analyzed the putative RACK1-40S subunit interface and generated eight RACK1 variants that have differing effects on ribosome binding in vivo. We show that yeast strains harboring even the most severely binding-defective RACK1 mutant fail to exhibit all of the phenotypes associated with RACK1 deletion. However, the efficiency of RACK1 binding to ribosomes correlates with a subset of growth behaviors observed for RACK1 deletion strains. These results indicate that although not required for all RACK1 activities, localization at ribosomes is integral to some aspects of RACK1 function.  相似文献   

3.
Receptor for activated C-kinase 1 (RACK1) serves as a scaffolding protein in numerous signaling pathways involving kinases and membrane-bound receptors from different cellular compartments. It exists simultaneously as a cytosolic free form and as a ribosome-bound protein. As part of the 40S ribosomal subunit, it triggers translational regulation by establishing a direct link between protein kinase C and the protein synthesis machinery. It has been suggested that RACK1 could recruit other signaling molecules onto the ribosome, providing a signal-specific modulation of the translational process. RACK1 is able to dimerize both in vitro and in vivo. This homodimer formation has been observed in several processes including the regulation of the N-methyl-d-aspartate receptor by the Fyn kinase in the brain and the oxygen-independent degradation of hypoxia-inducible factor 1. The functional relevance of this dimerization is, however, still unclear and the question of a possible dimerization of the ribosome-bound protein is still pending. Here, we report the first structure of a RACK1 homodimer, as determined from two independent crystal forms of the Saccharomyces cerevisiae RACK1 protein (also known as Asc1p) at 2.9 and 3.9 Å resolution. The structure reveals an atypical mode of dimerization where monomers intertwine on blade 4, thus exposing a novel surface of the protein to potential interacting partners. We discuss the significance of the dimer structure for RACK1 function.  相似文献   

4.
Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3′-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation.  相似文献   

5.
Earlier studies have shown that RACK1 functions as a negative regulator of abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana), but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, coexpression analysis revealed that more than 80% of the genes coexpressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1's function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and Saccharomyces cerevisiae RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B, and RACK1C, complemented the growth defects of the S. cerevisiae cross pathway control2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor6 (eIF6), whose mammalian homolog is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.  相似文献   

6.
7.
We have conducted a proteomic analysis of the 80S cytosolic ribosome from the eukaryotic green alga Chlamydomonas reinhardtii, and accompany this with a cryo-electron microscopy structure of the ribosome. Proteins homologous to all but one rat 40S subunit protein, including a homolog of RACK1, and all but three rat 60S subunit proteins were identified as components of the C. reinhardtii ribosome. Expressed Sequence Tag (EST) evidence and annotation of the completed C. reinhardtii genome identified genes for each of the four proteins not identified by proteomic analysis, showing that algae potentially have a complete set of orthologs to mammalian 80S ribosomal proteins. Presented at 25A, the algal 80S ribosome is very similar in structure to the yeast 80S ribosome, with only minor distinguishable differences. These data show that, although separated by billions of years of evolution, cytosolic ribosomes from photosynthetic organisms are highly conserved with their yeast and animal counterparts.  相似文献   

8.
Hepatitis C virus uses an internal ribosome entry site (IRES) in the viral RNA to directly recruit human 40S ribosome subunits during cap-independent translation initiation. Although IRES-mediated translation initiation is not subject to many of the regulatory mechanisms that control cap-dependent translation initiation, it is unknown whether other noncanonical protein factors are involved in this process. Thus, a global protein composition analysis of native and IRES-bound 40S ribosomal complexes has been conducted to facilitate an understanding of the IRES ribosome recruitment mechanism. A combined top-down and bottom-up mass spectrometry approach was used to identify both the proteins and their posttranslational modifications (PTMs) in the native 40S subunit and the IRES recruited translation initiation complex. Thirty-one out of a possible 32 ribosomal proteins were identified by combining top-down and bottom-up mass spectrometry techniques. Proteins were found to contain PTMs, including loss of methionine, acetylation, methylation, and disulfide bond formation. In addition to the 40S ribosomal proteins, RACK1 was consistently identified in the 40S fraction, indicating that this protein is associated with the 40S subunit. Similar methodology was then applied to the hepatitis C virus IRES-bound 40S complex. Two 40S ribosomal proteins, RS25 and RS29, were found to contain different PTMs than those in the native 40S subunit. In addition, RACK1, eukaryotic initiation factor 3 proteins and nucleolin were identified in the IRES-mediated translation initiation complex.  相似文献   

9.
Two proteins of yeast 40S ribosome subunit and four proteins of the 60S ribosome subunit were labelled in vivo with [32P]orthophosphate. Five of these proteins were phosphorylated by protein kinase 3, an enzyme which is cyclic AMP-independent and uses ATP and GTP as phosphoryl donors. Two proteins, belonging to the 60S ribosome subunit were phosphorylated by another, highly specific, cyclic AMP-independent protein kinase 1 B. Both in vivo and in vitro the most extensively phosphorylated protein species were acidic proteins, L44, L45 (according to the nomenclature of Kruiswijk & Planta, Molec. Biol. Rep., 1, 409-415, 1974) possibly corresponding to bacterial L7 and L12 proteins. The 40S ribosomal protein, S9, analogous to mammalian S6 protein, was phosphorylated in vivo but was not phosphorylated in vitro by either of the cyclic AMP-independent protein kinases. The obtained results clearly indicate that cyclic AMP-independent yeast protein kinases might be involved in the modification in vivo of some ribosomal proteins, in particular of the strongly acidic proteins of 60S ribosome subunit.  相似文献   

10.
11.
Translation of mRNA into protein is a fundamental step in eukaryotic gene expression requiring the large (60S) and small (40S) ribosome subunits and associated proteins. By modern proteomic approaches, we previously identified a novel 40S-associated protein named Asc1p in budding yeast and RACK1 in mammals. The goals of this study were to establish Asc1p or RACK1 as a core conserved eukaryotic ribosomal protein and to determine the role of Asc1p or RACK1 in translational control. We provide biochemical, evolutionary, genetic, and functional evidence showing that Asc1p or RACK1 is indeed a conserved core component of the eukaryotic ribosome. We also show that purified Asc1p-deficient ribosomes have increased translational activity compared to that of wild-type yeast ribosomes. Further, we demonstrate that asc1Delta null strains have increased levels of specific proteins in vivo and that this molecular phenotype is complemented by either Asc1p or RACK1. Our data suggest that one of Asc1p's or RACK1's functions is to repress gene expression.  相似文献   

12.
Folding of newly synthesized polypeptides (NSPs) into functional proteins is a highly regulated process. Rigorous quality control ensures that NSPs attain their native fold during or shortly after completion of translation. Nonetheless, signaling pathways that govern the degradation of NSPs in mammals remain elusive. We demonstrate that the stress-induced c-Jun N-terminal kinase (JNK) is recruited to ribosomes by the receptor for activated protein C kinase 1 (RACK1). RACK1 is an integral component of the 40S ribosome and an adaptor for protein kinases. Ribosome-associated JNK phosphorylates the eukaryotic translation elongation factor 1A isoform 2 (eEF1A2) on serines 205 and 358 to promote degradation of NSPs by the proteasome. These findings establish a role for a RACK1/JNK/eEF1A2 complex in the quality control of NSPs in response to stress.  相似文献   

13.
We recently identified Receptor for Activated C Kinase 1 (RACK1) as one of the molecular links between abscisic acid (ABA) signaling and its regulation on protein translation. Moreover, we identified Eukaryotic Initiation Factor 6 (eIF6) as an interacting partner of RACK1. Because the interaction between RACK1 and eIF6 in mammalian cells is known to regulate the ribosome assembly step of protein translation initiation, it was hypothesized that the same process of protein translation in Arabidopsis is also regulated by RACK1 and eIF6. In this article, we analyzed the amino acid sequences of eIF6 in different species from different lineages and discovered some intriguing differences in protein phosphorylation sites that may contribute to its action in ribosome assembly and biogenesis. In addition, we discovered that, distinct from non-plant organisms in which eIF6 is encoded by a single gene, all sequenced plant genomes contain two or more copies of eIF6 genes. While one copy of plant eIF6 is expressed ubiquitously and might possess the conserved function in ribosome biogenesis and protein translation, the other copy seems to be only expressed in specific organs and therefore may have gained some new functions. We proposed some important studies that may help us better understand the function of eIF6 in plants.Key words: CK1, eIF6, PKC, protein translation, RACK1, ribosome assembly, ribosome biogenesisEukaryotic Initiation Factor 6 (eIF6) was originally purified from wheat germ1 and was found to function as a ribosome dissociation factor through binding to the 60S ribosome subunit and preventing its association with the 40S ribosome subunit.2 Its homologous proteins were later purified from rabbit reticulocyte lysates,3 calf liver4 and human cells.4 The action of eIF6 in preventing the ribosome subunits association was later found to involve another two proteins, the activated Protein Kinase C (PKC) and the Receptor for Activated C Kinase 1 (RACK1) in mammalian cells.5 PKC is a family of proteins that can be activated by elevated cellular concentration of Ca2+ or diacylglycerol and is involved in multiple signal transduction pathways in mammalian cells.6 RACK1 was identified as a receptor for activated PKC, anchoring PKC to the subcellular location where its substrate is present.7,8 In this protein complex, RACK1 serves as a scaffold protein that simultaneously binds to eIF6 and activated PKC to bring these two proteins to close proximity. PKC then phosphorylates eIF6, leading to its dissociation from the 60S ribosome subunit and consequently allowing the association between the 40S and 60S ribosome subunits to assemble a functional 80S subunit to initiate protein translation5 (Fig. 1). Genetic studies supported the role of mammalian eIF6 in protein translation initiation as well as in cell growth.9 More recent structural studies supported a similar role of eIF6 in regulating 80S ribosome assembly in yeast.10,11 Yeast eIF6 (Tif6p) was also known to regulate 60S ribosome biogenesis.12,13 Very recently, eIF6 was identified as a component of a protein complex that interacts with the RNA-induced silencing complex and plays a role in microRNA-directed gene silencing.14 For a more comprehensive review of eIF6''s function in mammalian cells and in yeast, readers should refer to the following review article.15Open in a separate windowFigure 1A schematic presentation of the proposed molecular mode of action of eIF6, RACK1, PKC and CK1 in ribosome assembly and protein translation. Nuclear CK1 phosphorylates eIF6 at Serine 174 and Serine 175. This phosphorylation is required for the shuttling of eIF6 from nucleus into cytosol. eIF6 prevents joining of the cytosolic 60S ribosome subunit with the 40S subunit from forming a functional 80S ribosome. RACK1, via binding simultaneously to the eIF6 and the activated PKC, can facilitate the phosphorylation of eIF6 at Serine 235 by PKC. The Serine 235 phosphorylated eIF6 then disassociates from 60S ribosome, thus allowing the assembly of functional 80S ribosome and initiation of protein translation. CK1, Casein Kinase 1; 60S, 60S ribosome subunit; 40S, 40S ribosome subunit; eIF6, Eukaryotic Initiation Factor 6; RACK1, Receptor for Activated C Kinase 1; PKC, Protein Kinase C; pi, phosphate.Despite considerable progress that has been made in the identification of central components of plant hormone abscisic acid (ABA) signaling, little is known about the molecular mechanism of the long-recognized effect of ABA on protein translation. Our group has been working on the functional analysis of Arabidopsis RACK1 gene family,1619 and has identified RACK1 as a negative regulator of ABA responses.18 Recently, we discovered that RACK1 may play a role in ribosome assembly and 60S ribosome subunit biogenesis and therefore serve as one of the molecular links between ABA signaling and its control on protein translation.20 In addition, we discovered that RACK1 physically interacts with eIF6 in a yeast two-hybrid assay and in a Bi-molecular Fluorescence Complementation assay in an Arabidopsis leaf mesophyll protoplast system. The conserved interaction between RACK1 and eIF6 in plants and in mammals implies an evolutionarily conserved role of eIF6 and RACK1 in ribosome biogenesis, assembly and protein translation.  相似文献   

14.
15.
Loreni F  Iadevaia V  Tino E  Caldarola S  Amaldi F 《FEBS letters》2005,579(25):5517-5520
RACK1 has been shown to interact with several proteins, this suggesting that it may play a central role in cell growth regulation. Some recent articles have described RACK1 as a component of the small ribosomal subunit. To investigate the relationship between RACK1 and ribosome, we analyzed RACK1 mRNA structure and regulation. Translational regulation was studied in HeLa cells subjected to serum or amino acid deprivation and stimulation. The results show that RACK1 mRNA has a 5' terminal oligopyrimidine sequence and that its translation is dependent on the availability of serum and amino acids in exactly the same way as any other vertebrate ribosomal protein mRNA.  相似文献   

16.
Gibson TJ 《FEBS letters》2012,586(17):2787-2789
It should not be surprising that a protein with a name like RACK1 – short for receptor for activated C kinase 1 – is found in a variety of signaling complexes. Its alternative name, the splendidly unmemorable GNB2L1 – short for guanine nucleotide-binding protein subunit beta-2-like 1 – should reinforce this link to signaling complexes. There are currently over 400 publications listed in PubMed mentioning RACK1/GNB2L1 in the abstract, so it is certainly an actively studied protein with much involvement in different aspects of cell regulation being reported. RACK1 binds to the 40S ribosomal subunit, suggesting it links cell regulation and translation. It is also a target of intracellular parasites. And yet does this protein have the profile that it should? And why are there two kinds of RACK1 researcher who do not seem to communicate well?  相似文献   

17.
Despite the importance of microRNAs (miRNAs) in gene regulation, it is unclear how the miRNA-Argonaute complex--or miRNA-induced silencing complex (miRISC)--can regulate the translation of their targets in such diverse ways. We demonstrate here a direct interaction between the miRISC and the ribosome by showing that a constituent of the eukaryotic 40S subunit, receptor for activated C-kinase (RACK1), is important for miRNA-mediated gene regulation in animals. In vivo studies demonstrate that RACK1 interacts with components of the miRISC in nematodes and mammals. In both systems, the alteration of RACK1 expression alters miRNA function and impairs the association of the miRNA complex with the translating ribosomes. Our data indicate that RACK1 can contribute to the recruitment of miRISC to the site of translation, and support a post-initiation mode of miRNA-mediated gene repression.  相似文献   

18.
D Becker-Ursic  J Davies 《Biochemistry》1976,15(11):2289-2296
From the high salt wash of the ribosomes of the yeast Saccharomyces cerevisiae, three protein kinases have been isolated and separated by DEAE-cellulose chromatography. The three kinases differ in their abilities to phosphorylate substrates such as histones (calf thymus), casein, and S. cerevisiae ribosomes; two of the kinases showed increased activity in the presence of cyclic adenosine 3',5'-monophosphate when histones and 40S ribosomal subunits were used as substrates. The protein kinases catalyzed phosphorylation of certain proteins of the 40S and 60S ribosomal subunits, and 80S ribosomes in vitro. Nine proteins of the 80S ribosome, seven proteins of the 40S subunit, and eleven of the 60S subunit were phosphorylated; different proteins were modified to various extents when different kinases were used. We have identified several proteins of 40S and 60S ribosomal subunits which are not available to the kinases in the 80S particles. Ribosomes isolated from S. cerevisiae cells growing in logarithmic phase of growth were found to contain a number of phosphorylated proteins. Studies by two-dimensional polyacrylamide gel electrophoresis indicated that the ribosomal proteins phosphorylated in vivo correspond with those phosphorylated in vitro. The relationship of in vivo phsophorylation of ribosomes to the growth and physiology of S. cerevisiae is not known.  相似文献   

19.
Affinity grids (AG) are specialized EM grids that bind macromolecular complexes containing tagged proteins to obtain maximum occupancy for structural analysis through single-particle EM. In this study, utilizing AG, we show that His-tagged activated PKC βII binds to the small ribosomal subunit (40S). We reconstructed a cryo-EM map which shows that PKC βII interacts with RACK1, a seven-bladed β-propeller protein present on the 40S and binds in two different regions close to blades 3 and 4 of RACK1. This study is a first step in understanding the molecular framework of PKC βII/RACK1 interaction and its role in translation.  相似文献   

20.
Proteomic studies have addressed the composition of plant chloroplast ribosomes and 70S ribosomes from the unicellular organism Chlamydomonas reinhardtii But comprehensive characterization of cytoplasmic 80S ribosomes from higher plants has been lacking. We have used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to analyse the cytoplasmic 80S ribosomes from the model flowering plant Arabidopsis thaliana. Of the 80 ribosomal protein families predicted to comprise the cytoplasmic 80S ribosome, we have confirmed the presence of 61; specifically, 27 (84%) of the small 40S subunit and 34 (71%) of the large 60S subunit. Nearly half (45%) of the ribosomal proteins identified are represented by two or more distinct spots in the 2-DE gel indicating that these proteins are either post-translationally modified or present as different isoforms. Consistently, MS-based protein identification revealed that at least one-third (34%) of the identified ribosomal protein families showed expression of two or more family members. In addition, we have identified a number of non-ribosomal proteins that co-migrate with the plant 80S ribosomes during gradient centrifugation suggesting their possible association with the 80S ribosomes. Among them, RACK1 has recently been proposed to be a ribosome-associated protein that promotes efficient translation in yeast. The study, thus provides the basis for further investigation into the function of the other identified non-ribosomal proteins as well as the biological meaning of the various ribosomal protein isoforms.Patrick Giavalisco, Daniel Wilson are contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号