首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field pennycress (Thlaspi arvense L.) is a winter annual weed with a cold requirement for stem elongation and flowering. The relative abilities of several native gibberellins (GAs) and GA-precursors to elicit stem growth were compared. Of the eight compounds tested, gibberellin A1, (GA1), GA9, and GA20 caused stem growth in noninduced (no cold treatment) plants. No stem growth was observed in plants treated with ent-kaurene, ent-kaurenol, ent-kaurenoic acid, GA53, or GA8. Moreover, of the biologically active compounds, GA9 was the most active followed closely by GA1. In thermoinduced plants (4-week cold treatment at 6°C) that were continuously treated with 2-chlorocholine chloride to reduce endogenous GA production, GA9 was the most biologically active compound. However, the three kaurenoid GA precursors also promoted stem growth in thermoinduced plants, and were almost as active as GA20. No such increase in activity was observed for either GA[unk] or GA53. The results are discussed in relation to thermoinductive regulation of GA metabolism and its significance to the initiation of stem growth in field pennycress. It is proposed that thermoinduction results in increased conversion of ent-kaurenoic acid to GAs through the C-13 desoxy pathway and that GA9 is the endogenous mediator of thermoinduced stem growth in field pennycress.  相似文献   

2.
This paper describes attempts to localize the site of perception of low temperatures (0-10°C) during thermoinduction in Thlaspi arvense L. Reproductive development (stem elongation and flower formation) was observed when shoots were cooled to 4°C for 4 weeks and then returned to 21°C while maintaining the roots constant 21°C. However, chilling the roots was ineffective for initiating reproductive development. The apparent site of perception of thermoinductive temperatures was further localized to the shoot tip (apex and immature leaves) by controlling the temperature of the shoot tip independently of the rest of the plant. Furthermore, excised apices regenerated flowering plants in organ culture only if they were subjected to a 4 week cold treatment. Grafting experiments also support the notion that the shoot tip or the apex is the site of perception of thermoinductive temperatures: noninduced shoot tips grafted onto bolting donors remained as vegetative rosettes. Paradoxically, it was found that the cells of the shoot tip are not the only ones capable of being thermoinduced. Shoots regenerated from leaf cuttings excised from thermoinduced plants exhibited all signs of reproductive development, while regenerated shoots from control leaves developed into vegetative rosettes. It is suggested that many cell types are capable of being thermoinduced and that the shoot tip may appear to be the site of perception of thermoinductive temperatures because structures associated with reproductive development originate from this tissue.  相似文献   

3.
Field pennycress (Thlaspi arvense L.) is a winter annual that requires a cold treatment for the induction of stem elongation. An inbred line was selected in which no stem elongation was observed in plants grown for 6 months at 21°C regardless of the prevailing photoperiod. Increased exposure time of plants grown initially at 21°C to cold (2°C) induced a greater rate of stem elongation when the plants were returned to 21°C. Moreover, longer cold treatments resulted in a greater maximum stem height and reduced the lag period for the onset of measurable internode elongation. The optimal temperature range for thermoinduced stem growth was broad: rates of stem growth in plants maintained for 4 weeks at either 2° or 10°C were virtually identical. However, a 4-week thermoinductive treatment at 15°C resulted in a greater lag period for the initiation of stem elongation and a decreased growth rate. The rate of cold-induced stem elongation was greater in plants subjected to long days than for plants subjected to short days following the cold treatment. Thus, photoperiod does not control the induction of stem elongation, but does regulate stem elongation in progress. Exogenous gibberellin A3 (GA3) was able to substitute for the cold requirement, but elicited a greater response in plants maintained under long days than short days. This indicates that photoperiod influences the plant's sensitivity to GAs. The GA biosynthesis inhibitor, 2-chloroethyltrimethyl ammonium chloride, inhibited low temperature-induced stem elongation, and this inhibition was completely reversed by exogenous GA3. These results suggest that cold-induced stem elongation in field pennycress is mediated by some change in the endogenous GA status.  相似文献   

4.
Field pennycress (Thlaspi arvense L.) is a winter annual weed with a cold requirement for reproductive development. Previous work in this laboratory has demonstrated that the bolting aspect (rapid stem growth) of reproductive development is mediated by gibberellins (GA). The present paper describes the selection and characterization of a mutant lacking the capacity for thermoinduced stem growth. Seeds of an inbred field pennycress line (CR1) were treated with the chemical mutagen ethyl methane sulfonate, germinated, and allowed to produce seed. Plants derived from these seeds were screened for reduced stem growth. A mutant line, EMS-141, in which the lack of stem growth can be fully overcome with exogenous GA3, was selected for further analysis. Other phenotypic abnormalities exhibited by the mutant line include reduced petiole growth, slightly delayed floral initiation, and failure of flowers to develop fully. These are also reversed with exogenous GA3. Evidence is presented indicating that all of the alterations in growth and development exhibited by EMS-141 are conferred by a recessive mutation of a single nuclear gene. Through quantitative analysis of endogenous GA and GA precursors and a comparison of the abilities of various compounds to restore normal growth when applied to plants of EMS-141, the physiological basis for the mutant phenotype was determined to be the result of highly reduced endogenous GA levels. Moreover, the affected site in GA biosynthesis appears to be the accumulation of ent-kaurene, probably at the level of ent-kaurene synthase. The relative abilities of exogenous GA and GA precursors to restore normal growth of petioles and stems are compared, and the results are used to make inferences on the functions of the two different pathways of GA metabolism that exist in field pennycress.  相似文献   

5.
The influence of ethylene on growth in etiolated lupine (Lupinus albus L.) hypocotyls was studied in ethephon-treated plants. Ethephon reduced the length and increased the diameter of hypocotyls. At the end of the hypocotyl growth period (14 days), the fresh weight was reduced by 53%, and the dry weight was reduced by 16%. Thus, ethylene reduced water uptake in the tissues to a greater extent than the incorporation of new materials. Light microscopic measurements showed that the thickness of tissues was stimulated by ethylene, the vascular cylinder and cortex exhibiting greater increases (55 and 45%, respectively) than pith (26%) or epidermis (12%). Ethephon modified the cell growth pattern, stimulating lateral cell expansion and cell wall thickness, while reducing cell elongation. The response to ethylene varied in the different tissues and was higher in cortex and pith cells than in the epidermis cells. The ethylene-induced cell expansion in the cortex varied according to the localization of cells in the tissue: the central and subepidermal layers showed little change, whereas the innermost layers exhibited the greatest increase. Electron microscopy revealed that ethylene increased both the rough endoplasmic reticulum and dictyosomes, suggesting that ethylene stimulated the secretion of cell wall materials. In untreated seedlings, the pattern of cell growth was similar in cells from the epidermis, cortex, and pith. The final cell size varied along the hypocotyl, the cells becoming shorter and broader the closer to the basal zones of the organ.  相似文献   

6.
The effect of inflorescence removal on stem elongation in Chinese cabbage cv. Spring A was studied. Removal of the inflorescence before its visibility, or upon its appearance but before the beginning of bolting (stages 1–3), markedly reduced the stem length. Removal after the beginning of bolting (stage 5) had no effect on stem length. Application of GA3 to the treated plants partially or fully restored the elongation of the flowering stem, whereas paclobutrazol inhibited the elongation of the treated, as well as the control stems. Indole-3-acetic acid (IAA) or kinetin was ineffective in restoring stem elongation of the plants from which the inflorescence had been removed. Inflorescences at stages 1–2 were found to secrete about 10 times more gibberellic acid (GA)-like activity compared with control apices or inflorescences at stage 5. It is suggested that the developing inflorescence is the major source of GAs which control stem elongation. However, shortly after the appearance of the inflorescence at the onset of bolting, stem elongation is no longer dependent on GAs derived from the apical inflorescence but require GAs from other sources.  相似文献   

7.
Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous [2H]-ent-kaurenoic acid (KA) and [14C]-gibberellin A12-aldehyde (GA12-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of [2H]-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. Moreover, there was 47 times more endogenous KA in noninduced than in thermoinduced shoot tips as determined by combined gas chromatography-mass spectrometry (GC-MS). The major metabolite of [2H]-KA in thermoinduced shoot tips was a monohydroxylated derivative of KA, while in noninduced shoot tips, the glucose ester of the hydroxy KA metabolite was the main product. Gibberellin A9 (GA9) was the only GA in which the incorporation of deuterium was detected by GC-MS, and this was observed only in thermoinduced shoot tips. The amount of incorporation was small as indicated by the large dilution by endogenous GA9. In contrast, thermo- and noninduced leaves metabolized exogenous [2H]-KA into GA20 equally well, although the amount of conversion was also limited. These results are consistent with the suggestion (JD Metzger [1990] Plant Physiol 94: 000-000) that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of [14C]-GA12-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA12-aldehyde.  相似文献   

8.
First internodes of light-grown bean seedlings exposed to supplementary red and far-red light and those of dark-grown seedlings were sectioned and studied to determine the effects of irradiation on the cellular components of polarized growth. Cell counts and measurements of epidermis, cortex, and pith are given. Increased length of internodes of far-red-treated plants was caused by both increased rate and increased duration of cell elongation. The effect of far-red light is interpreted as a reversal of the accelerating effect of light upon cell maturation. It is suggested that investigations of the mechanism of the red, far-red response of stems be concerned with the processes involved in cell elongation. In darkness, rate and duration of cell division as well as rate and duration of cell elongation were greater than in any of the irradiated plants, indicating that only part of the photocontrol of stem elongation is mediated through the red, far-red system.  相似文献   

9.
The effect of inflorescence removal on stem elongation in Chinese cabbage cv. Spring A was studied. Removal of the inflorescence before its visibility, or upon its appearance but before the beginning of bolting (stages 1–3), markedly reduced the stem length. Removal after the beginning of bolting (stage 5) had no effect on stem length.Application of GA3 to the treated plants partially or fully restored the elongation of the flowering stem, whereas paclobutrazol inhibited the elongation of the treated, as well as the control stems. Indole-3-acetic acid (IAA) or kinetin was ineffective in restoring stem elongation of the plants from which the inflorescence had been removed. Inflorescences at stages 1–2 were found to secrete about 10 times more gibberellic acid (GA)-like activity compared with control apices or inflorescences at stage 5.It is suggested that the developing inflorescence is the major source of GAs which control stem elongation. However, shortly after the appearance of the inflorescence at the onset of bolting, stem elongation is no longer dependent on GAs derived from the apical inflorescence but require GAs from other sources.Contribution from the Agricultural Research Organization, The Volcani Center Bet Dagan, Israel No. 2218-E, 1987 series.  相似文献   

10.
Sachs , Roy M., Charles F. Bretz , and Anton Lang . (U. California, Los Angeles.) Shoot histogenesis: The early effects of gibberellin upon stem elongation in two rosette plants. Amer. Jour. Bot. 46(5): 376–384. Illus. 1959.—Within 24 hr. after the application of gibberellic acid (GA) to vegetative plants of biennial Hyoscyamus and of the long-day plant Samolus, a considerable increase in mitotic activity was observed in the pith, cortical, and vascular tissues of the rosette axis immediately below the apical meristem. As the treatment continued, the zone of cell division increased commensurate with the increase in length of the stem; the new cell divisions formed transverse walls predominantly and thus contributed to stem elongation. The cell contribution from the apical meristem was but a small fraction of the total produced by the subapical tissues, suggesting that the induced subapical mitotic activity is the main site of tissue development in the shoot. There was no evidence for cell elongation for at least 72 hr. after application of GA, and, hence, the initial increase in stem length was due solely to an increase in cell number. With regard to the general problem of shoot histogenesis, our data for the rosette plants and those for Xanthium and Chrysanthemum showing extensive cell division far below the apical meristem, are in full agreement with the studies by Bindloss (1942) with tomato, and support her conclusion that “. . . it is no longer possible to think that the chief center of cell division is in a relatively short zone 60 to 100 microns from the stem tip . . . and that cell division activity in the promeristem is not solely responsible for stem length.” On the contrary, the mitotic activity in the subapical regions is undoubtedly responsible for the major part of the cells found in the stem.  相似文献   

11.
A procedure was developed to reduce premature bolting and flowering in Chinese cabbage grown in the field during the winter. This involved (a) the use of geothermic water as an inexpensive heat source for heating the transplants in the nursery; (b) application of the growth retardants daminozide (Alar) and paclobutrazol (PP333) to the heated plants before removing them to the field; and (c) application of daminozide to the plants in the field. This procedure markedly reduced stem elongation and the length of the internal stem in relation to the head without affecting the size of the head. Furthermore, application of daminozide in the field minimized the severity of tipburn, a common physiological disorder in Chinese cabbage fields. The result of such treatment was the production of high-quality Chinese cabbage heads which otherwise are unobtainable during the winter.Contribution from the Agricultural Research Organization, The volcani Center, Bet Dagan, Israel. No. 1172-E, 1984 series.  相似文献   

12.
Stecklings (roots) of three cultivars of carrots (Daucus carota L.) were vernalized 10 weeks at 5 C and subsequently grown at each of three greenhouse night/day temperature regimes: high (27/32 C), medium (21/27 C), and low (15/21 C). Floral differentiation occurred first in the easy bolting cv. Scarlet Nantes, intermediate in cv. Danvers 126, and last in cv. Royal Chantenay. Stem elongation arising from the subapical meristematic region always preceded floral differentiation. Extractable gibberellin-like activity in carrot stem apices increased from harvest during the 10-week vernalization period, then remained constant even though floral differentiation and stem elongation occurred during an additional 20-week cold storage period. Low temperature had both an inductive and a direct effect on reproductive development depending on length of low temperature exposure.  相似文献   

13.
The effects of shoot inversion on stem structure over 72 hr were investigated in Pharbitis nil by analyzing cell number, cell length, and the cross sectional areas of cells, tissues, and regions. An increase in stem diameter can be attributed to an increase in both cell number and cross sectional area of pith (primarily) and vascular tissue (secondarily). Qualitative observations of cell wall thickness in the light microscope did not reveal any significant effects of shoot inversion on this parameter. The inhibition of shoot elongation was accompanied by a significant decrease in cell length in the pith. The results are generally consistent with an ethylene effect on cell dimensions, especially in the pith.  相似文献   

14.
Quantitative changes in cell pattern in the pith, cortex, cortical collenchyma, and epidermis were followed in developing internodes of Liquidambar to examine the cellular basis of compressive and tensile stresses in organized shoot growth. Initially, the highest rates of cell multiplication occur in the pith, followed successively by the epidermis, cortex, and cortical collenchyma. As internodes enter the phase of maximum elongation growth, mitotic activity begins to shift acropetally, accompanied by pronounced changes in cell pattern. The highest rates of cell multiplication now occur in the pith and cortex and continue until the cessation of internode growth. Concomitantly, reduced rates of cell division in peripheral tissues result in rapid increases in rates of cell elongation in the cortical collenchyma and epidermis. Attention is focused on the role of continued cell division in developing internodes with emphasis on differences in rates of cell multiplication between inner and outer tissues affecting patterns of tissue stress. For example, rapid and sustained increases in cell number in the pith, accompanied by growth of readily extensible pith cells, result in the development of compressive forces driving the growth of internodes. Conversely, continuing divisions in less extensible collenchyma and epidermal cells can relieve threshold tensile stresses resulting from the continuous stretching of these tissues by the developing pith. The concept that the passive extension of peripheral tissues, especially the epidermis, control the rate of internode elongation is viewed as an oversimplification of the interacting role of compressive and tensile forces in organized growth and development.  相似文献   

15.
This study analysed the dynamics of cell production and extension, and how these were affected by applied gibberellic acid (GA3), during internode development in dwarf peas (Pisum sativum L. cv. Meteor). Image analysis was used to obtain cell number and length data for entire cell columns along the epidermis, the two outermost cortical layers, and the pith, from internode 7, over a time period covering the whole of the internode's growth phase. For a few days following the inception of an internode at the shoot apex, little further growth occurred, and there was no significant effect of GA3 on cell division or cell extension. The subsequent growth of the internode was stimulated more than fourfold by GA3 as a result of the production of more than twice the number of cells, which were twice as long. At least 96.5% of the cells of the mature internode were actually formed within the internode itself during this period of growth, demonstrating that the internode cells themselves represent the morphogenetic site of response to GA3. Mitoses and cell extension occurred along the full length of the internode throughout its development. The daily changes in cell numbers were modelled by the Richards function, and manipulations of the fitted functions to reveal time trends of absolute and specific cell production rates were performed for each stem tissue. The increase in cell numbers in the +GA3 plants was brought about by an increase in the rate of cell production, over a shorter time interval; specific cell production rates declined continuously from initial rapid rates in the +GA3 epidermis and pith, but declined more slowly in the cortex. The control (−GA3) epidermis and cortex cells exhibited a constant specific cell production rate (i.e. purely exponential) for several days. Cell extension rates were calculated so as to compensate for the size-reduction effects of concurrent cell division. These calculations confirmed that `real' cell extension rates were higher in the +GA3 internodes. Models of the cellular controls of internode growth, based on the estimated dynamics of cell division and extension, are discussed. Received: 1 July 1997 / Accepted: 30 July 1997  相似文献   

16.
Effects of the plant growth retardant, ancymidol, on the growthand morphology of the shoot system of cucumber (Cucumis sativusL. ) were investigated. Ancymidol inhibited stem elongation,reducing both number and length of internodes. Reduction inleaf area, attributable to a reduction in both cell size andnumber, was accompanied by an increase in chlorophyll per unitarea. The retardant decreased apical dominance and delayed anthesis.Gibberellic acid fully reversed ancymidol-induced inhibitionof stem elongation, internode length and production, and leafexpansion. GA4/7 and ancymidol gave a synergistic promotionof stem elongation by increasing elongation of younger internodesand increasing internode production. Synergistic promotion ofpetiole elongation by this combination was also observed. Ancymidol,applied 7 d previously either to the shoot or root, severelyreduced the level of gibberellin-like activity in bleeding sapcollected from decapitated plants.  相似文献   

17.
BACKGROUND AND AIMS: Climate projections predict drier and warmer conditions in the Mediterranean basin in the next decades. The possibility of such climatic changes modifying the growth of two Mediterranean species, Erica multiflora and Globularia alypum, which are common components of Mediterranean shrublands, was assessed. METHODS: A field experiment was performed from March 1999 to March 2002 to prolong the drought period and to increase the night-time temperature in a Mediterranean shrubland, where E. multiflora and G. alypum are the dominant species. Annual growth in stem diameter and length of both species was measured and annual stem biomass production was estimated for 1999, 2000 and 2001. Plant seasonal growth was also assessed. KEY RESULTS: On average, drought treatment reduced soil moisture 22 %, and warming increased temperature by 0.7-1.6 degrees C. Erica multiflora plants in the drought treatment showed a 46 % lower annual stem elongation than controls. The decrease in water availability also reduced by 31 % the annual stem diameter increment and by 43 % the annual stem elongation of G. alypum plants. New shoot growth of G. alypum was also strongly reduced. Allometrically estimated biomass production was decreased by drought in both species. Warming treatment produced contrasting effects on the growth patterns of these species. Warmer conditions increased, on average, the stem basal diameter growth of E. multiflora plants by 35 %, raising also their estimated stem biomass production. On the contrary, plants of G. alypum in the warming treatment showed a 14 % lower annual stem growth in basal diameter and shorter new shoots in spring compared with controls. CONCLUSIONS: The results indicate changes in the annual productivity of these Mediterranean shrubs under near future drier and warmer conditions. They also point to alterations in their competitive abilities, which could lead to changes in the species composition of these ecosystems in the long term.  相似文献   

18.
Summary Autoradiographic and microautoradiographic studies of 2-year-old Picea abies plants show that in summer leaf assimilates from the second-year shoot are translocated basipetally. Leaf assimilates are first transported to the stem via leaf trace phloem, then to the base of the stem in the sieve cells of the latest increment of secondary phloem. On the way down leaf assimilates move radially from sieve cells into cells of the phloem parenchyma, the vascular cambium, the rays, the inner periderm and certain cells of pith and cortex, including the epithelial cells surrounding the resin ducts. Other cells of pith and cortex remain nearly free of label, despite the long translocation time (20 h). With the exception of the vascular cambial cells, the stem cells that gain leaf assimilates by radial distribution coincide with those that contain chlorophyll and starch.  相似文献   

19.
Shoot growth and histogenesis were followed in five unrelated tree taxa possessing inherently diverse patterns of shoot development. Following the resumption of growth in spring, each species differs quantitatively in the number of internodes elongating contemporaneously, in rates and duration of internodal elongation and seasonal periodicity of shoot growth. The basic pattern of internode elongation and histogenesis is qualitatively similar in each of the dicotyledonous species observed irrespective of growth habit or final form of the shoot produced. During the intial phase of internode development, growth is essentially uniform throughout young internodes, corresponding to an active period of cell division during which time pith cells increase in size to about one-third their final length. Subsequently, the pattern of cell division shifts progressively upward concomitant with increased elongation and maturation of pith cells in the basal portion of developing internodes. Thereafter, a wave of cell division accompanied by cell elongation continues to proceed acropetally until growth finally ceases in the distal portion of each internode. As long as internode elongation continues, frequently at distances 15–20 cm below the shoot apex, cell divisions still occur in the distal growing portion. As successive portions of each internode mature acropetally, final length of pith cells becomes relatively uniform throughout the internode. During the process of internode growth and development, cell lengths increase only two- to threefold, whereas cell numbers increase ten- to 30-fold, indicating the dominant role of cell division and increases in cell number to final internode length. Morphological patterns of shoot expression associated with differences in internode lengths along the axis of either preformed or neoformed shoots, as well as sylleptic branches, are due to differences in cell number rather than final cell length. Significant variations in final internode lengths along the axis of episodic shoots, caused by either endogenous or exogenous factors, are also attributed to differences in cell number.  相似文献   

20.
The possible implication of ethylene on the growth regulation of etiolated lupin hypocotyls was investigated. Excised hypocotyl sections from actively growing seedlings produced ethylene at a rate of 3 nmol h-1 g-1 min-1. The rate of ethylene production was increased about 7 times when sections were treated with 10 mM 1-aminocyclopropane-1-carboxylic acid (ACC). Measurement of endogenous ACC showed that 95 % of total ACC (64.2 nmol g-1 min-1) corresponded to conjugated ACC. Treatments to intact seedlings with the ethylene precursor ACC, and the ethylene generating compound, 2-chloroethyl phosphonic acid (ethephon) during the cell elongation phase of the hypocotyl (from 7 to 21 dage), modified the cell growth of the organ. ACC (1 or 5 mM) or low concentrations of ethephon (0.66 mM) produced a transient decrease in the growth rate without modifying the final length of the hypocotyls. Higher concentrations of ethephon reduced the final length; the younger the seedlings were, the greater the reduction. Simultaneously to inhibition of cell elongation, ethephon produced stimulation of the radial expansion of cells in pith and cortex. The growth inhibition period, which lasted for 2 days after the treatments, was followed by another period in which the growth rate of treated plants surpassed that of the control. In both cases differences were observed along the hypocotyls due to the different growth status of the cells. It is suggested that the sensitivity to ethylene and the metabolism of ethylene depend on the growth status of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号