首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

2.
The pathway of ethylene biosynthesis was examined in two lower plants, the semi-aquatic ferns Regnellidium diphyllum Lindm. and Marsilea quadrifolia L. As a positive control for the ethylene-biosynthetic pathway of higher plants, leaves of Arabidopsis thaliana (L.) Heynh. were included in each experiment. Ethylene production by Regnellidium and Marsilea was not increased by treatment of leaflets with 1-aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene in higher plants. Similarly, ethylene production was not inhibited by application of aminoethoxyvinylglycine and -aminoisobutyric acid, inhibitors of the ethylene biosynthetic enzymes ACC synthase and ACC oxidase, respectively. However, ACC was present in both ferns, as was ACC synthase. Compared to leaves of Arabidopsis, leaflets of Regnellidium and Marsilea incorporated little [14C]ACC and [14C]methionine into [14C]ethylene. From these data, it appears that the formation of ethylene in both ferns occurs mainly, if not only, via an ACC-independent route, even though the capacity to synthesize ACC is present in these lower plants.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AdoMet S-adenosyl-l-methionine - AIB -aminoisobutyric acid - AVG aminoethoxyvinylglycine This research was supported by the U.S. Department of Energy through grant No. DE-FG02-91ER20021 and, in part, by a fellowship of the National Engineering and Research Council of Canada to Jacqueline Chernys.  相似文献   

3.
In vivo ethylene production by hypocotyl segments of sunflower seedlings and in vitro activity of 1-aminocyclopropane-1-carboxylic acid oxidase (formerly ethylene-forming enzyme) extacted from the same tissues increase with increasing concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC) and oxygen. ACC oxidase activity follows Michaelis-Menten kinetics. The apparent Km values of the enzyme towards ACC, estimated in vivo and in vitro, are respectively 219 M and 20.6 M. Both Km values towards O2 are similar, ca 10.6–11.4%. A decrease in concentration in one of the substrates (ACC or O2) results in an increase in in vivo apparent Km of ACC oxidase for the other substrate. On the contrary, Km values of the enzyme towards ACC or O2 estimated in vitro are not dependent upon the concentration of the other substrate (ACC or O2).Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - MACC malonylate 1-aminocyclopropane-1-carboxylic acid - SD standard deviation  相似文献   

4.
A simple and sensitive chemical assay was developed for 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene. The assay is based on the liberation of ethylene from ACC at pH 11.5 in the presence of pyridoxal phosphate, MnCl2 and H2O2. This assay was used to detect ACC in extracts of tomato fruits (Lycopersicon esculentum Mill.) and to measure the activity of a soluble enzyme from tomato fruit that converted S-adenosylmethionine (SAM) to ACC. The enzyme had a Km of 13 M for SAM, and conversion of SAM to ACC was competitively and reversibly inhibited by aminoethoxyvinylglycine (AVG), an analog of rhizobitoxine. The Ki value for AVG was 0.2 M. The level of the ACC-forming enzyme activity was positively correlated with the content of ACC and the rate of ethylene formation in wild-type tomatoes of different developmental stages. Mature fruits of the rin (non-ripening) mutant of tomato, which only produce low levels of ethylene, contained much lower levels of ACC and of the ACC-forming enzyme activity than wild-type tomato fruits of comparable age.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid - SAM S-adenosyl-L-methionine Michigan Agricultural Experiment Station No. 8876  相似文献   

5.
K. Manning 《Planta》1986,168(1):61-66
The relationship between ethylene production and the CN--assimilating enzyme -cyanoalanine synthase (CAS; EC 4.4.1.9) was examined in the carnation (Dianthus caryophyllus L.) flower. In petals from cut flowers aged naturally or treated with ethylene to accelerate senescence the several hundred-fold increase in ethylene production which occurred during irreversible wilting was accompanied by a one- to twofold increase in CAS activity. The basal parts of the petal, which produced the most ethylene, had the highest CAS activity. Studies of flower parts (styles, ovaries, receptacles, petals) showed that the styles had a high level of CAS together with the ethylene-forming enzyme (EFE) system for converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The close association between CAS and EFE found in styles could also be observed in detached petals after induction by ACC or ethylene. Treatment of the cut flowers with cycloheximide reduced synthesis of CAS and EFE. The data indicate that CAS and ethylene production are associated, and are discussed in relation to the hypothesis that CN- is formed during the conversion of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglyoine - CAS -cyanoalanine synthase - CHI cycloheximide - EFE ethylene-forming enzyme  相似文献   

6.
Bean leaves from Phaseolus vulgaris L. var. Pinto 111 react to mechanical wounding with the formation of ethylene. The substrate for wound ethylene is 1-aminocyclopropane-1-carboxylic acid (ACC). It is not set free by decompartmentation but is newly synthesized. ACC synthesis starts 8 to 10 min after wounding at 28°C, and 15 to 20 min after wounding at 20°C. Aminoethoxyvinylglycine (AVG), a potent inhibitor of ethylene formation from methionine via ACC, inhibits wound ethylene synthesis by about 95% when applied directly after wounding (incubations at 20°C). AVG also inhibits the accumulation of ACC in wounded tissue. AVG does not inhibit conversion of ACC to ethylene. Wound ethylene production is also inhibited by cycloheximide, n-propyl gallate, and ethylenediaminetetraacetic acid.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG ammoethoxyvinylglycine - EDTA ethylenediaminetetraacetic acid  相似文献   

7.
Tsu-Tsuen Wang  Shang Fa Yang 《Planta》1987,170(2):190-196
In order to understand the physiological significance of the in-vitro lipoxygenase (EC 1.13.11.12)-mediated ethylene-forming system (J.F. Bousquet and K.V. Thimann 1984, Proc. Natl. Acad. Sci. USA 81, 1724–1727), its characteristics were compared to those of an in-vivo ethylene-forming system. While oat (Avena sativa L.) leaves, as other plant tissues, preferentially converted only one of the 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC) isomers to 1-butene, the lipoxygenase system converted all four AEC isomers to 1-butene with nearly equal efficiencies. While the in-vivo ethylene-forming system of oat leaves was saturable with ACC with a Km of 16 M, the lipoxygenase system was not saturated with ACC even at 10 mM. In contrast to the in-vivo results, only 10% of the ACC consumed in the lipoxygenase system was converted to ethylene, indicating that the reaction is not specific for ethylene formation. Increased ACC-dependent ethylene production in oat leaves following pretreatment with linoleic acid has been inferred as evidence of the involvement of lipoxygenase in ethylene production. We found that pretreating oat leaves with linoleic acid resulted in increased ACC uptake and thereby increased ethylene production. A similar effect was observed with oleic acid, which is not a substrate of lipoxygenase. Since linoleic acid hydroperoxide can substitute for lipoxygenase and linoleic acid in this system, it is assumed that the alkoxy radicals generated during the decomposion of linoleic acid hydroperoxide are responsible for the degradation of ACC to ethylene. Our results collectively indicate that the reported lipoxygenase system is not the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - Epps N-(2-hydroxyethyl)-piperazine-N-3-propanesulfonic acid - LH linoleic acid - LOOH linoleic acid hydroperoxide - pyridoxal-P pyridoxal-phosphate This work was presented at the 12th International Conference on Plant Growth Substances, Heidelberg, FRG, August 1985 (Abstract No. PO 5-52)  相似文献   

8.
Summary This report describes the regeneration response of excised seedling roots of silktree (Albizzia julibrissin) to added ethylene precursors/generators (1-amino-cyclopropane-1-carboxylic acid [ACC], 2-chloroethylphosphonic acid [CEPA]), biosynthesis inhibitors (aminoethoxyvinylglycine [AVG], an oxime ether derivative [OED={[(ispropylidene)-amino]oxy}-acetic acid-2-(methoxy)-2-oxoethyl ester], CoCl2 [Co++]), and an ethylene action inhibitor (AgNO3 [Ag+]). When placed on B5 medium, about 50% of the control explants formed shoot buds within 15 days. Addition of ACC or CEPA (1–10 µM) to the culture medium decreased both the percentage of cultures forming shoots and the number of shoots formed per culture. In contrast, AVG and OED (1–10 µM) increased shoot formation to almost 100% and increased the number of shoots formed per culture. Likewise, both Co++ and Ag+ (1–10 µM) increased shoot regeneration, but the number of shoots produced after 30 days was less than with AVG or OED. The inhibitors of ethylene biosynthesis were partially effective in counteracting the inhibitory effect of ACC on shoot formation. These results suggest that modulation of ethylene biosynthesis and/or action can strongly influence the formation of adventitious shoots from excised roots of silktree.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CEPA 2-chloroethylphosphonic acid - OED oxime ether derivative  相似文献   

9.
The effects of ethylene and CO2 on shoot regeneration in excised leaf cultures of Paulownia kawakamii were examined. When both the gases were prevented from accumulating in the headspace of cultures using mercuric perchlorate and potassium hydroxide traps, shoot regeneration frequency improved and callus production was reduced compared to the control and cultures with only one of the gases trapped. Incorporation of either aminoethoxyvinylglycine (AVG) or 1-amino-cyclopropane-1-carboxylic acid (ACC) in the culture medium caused significant reduction in shoot regeneration. There was profuse callus production in the presence of high amounts of ACC, which was accompanied by over sixfold increase in the rate of ethylene production. However, in the presence of AVG callus production was delayed and shoot regeneration decreased, suggesting that low levels of ethylene might be needed for de novo shoot bud induction in Paulownia cultures.Abbreviations IAA Indole-3-acetic acid - MP mercuric perchlorate - AVG aminoethoxyvinylglycine - ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

10.
Radermachera sinica L. is an ornamental plant with demonstrated sensitivity to ethylene-induced leaf abscission. In this study, we examine the relationship between abscisic acid (ABA) and ethylene in initiating the abscission response. Treatment with 1 l L\s-1 of ethylene, 1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) or 1 mM ABA resulted in complete defoliation of leaf explants. Application of 0.125 mM silver thiosulfate (STS) inhibited ethylene- and ACC-induced abscission but had no effect on explants treated with ABA. The ABA-induced abscission was unaffected by treatment with aminoethoxyvinylglycine (AVG) or aminooxyacetic acid (AOA). Treatment of explants with 1 mM cobalt chloride (CoCl2) or 2000 l L\s-1 of norbornadiene (NBD) completely inhibited abscission in explants treated with 1 l L\s-1 ethylene or 1 mM ACC but they were only marginally effective in blocking ABA-induced abscission despite the lower level of endogenous ethylene. ABA appeared to increase the sensitivity of explants to ethylene. However, the evidence suggests that ABA may also function independent of ethylene to induce leaf abscission in R. sinica.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminooxyacetic acid - AVG aminoethoxyvinylglycine - CoCl2 cobalt chloride - NBD norbornadiene - STS silver thiosulfate  相似文献   

11.
Jennifer F. Jones  Hans Kende 《Planta》1979,146(5):649-656
1-Aminocyclopropane-1-carboxylic acid (ACC) stimulated the production of ethylene in subapical stem sections of etiolated pea (cv. Alaska) seedlings in the presence and absence of indole-3-acetic acid (IAA). No lag period was evident following application of ACC, and the response was saturated at a concentration of 1 mM ACC. Levels of endogenous ACC paralleled the increase in ethylene production in sections treated with different concentrations of IAA and with selenoethionine or selenomethionine plus IAA. The IAA-induced formation of both ACC and ethylene was blocked by the rhizobitoxine analog aminoethoxyvinylglycine (AVG). Labelling studies with L-[U-14C]methionine showed an increase in the labelling of ethylene and ACC after treatment with IAA. IAA had no specific effect on the incorporation of label into S-methylmethionine or homoserine. The specific radioactivity of ethylene was similar to the specific radioactivity of carbon atoms 2 and 3 of ACC after treatment with IAA, indicating that all of the ethylene was derived from ACC. The activity of the ACC-forming enzyme was higher in sections incubated with IAA than in sections incubated with water alone. These results support the hypothesis that ACC is the in-vivo precursor of ethylene in etiolated pea tissue and that IAA stimulates ethylene production by increasing the activity of the ACC-forming enzyme.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine, the aminoethoxy analog of rhizobitoxine - IAA indole-3-acetic acid - SAM S-adenosylmethionine - SMM S-methylmethionine  相似文献   

12.
The biosynthesis of ethylene was examined in suspension-cultured cells of parsley (Petroselinum hortense) treated with an elicitor from cell walls of Phytophthora megasperma. Untreated cells contained 50 nmol g-1 of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), and produced ethylene at a rate of about 0.5 nmol g-1 h-1. Within 2 h after addition of elicitor to the culture medium, the cells started to produce more ethylene and accumulated more ACC. Exogenously added ACC did not increase the rate of ethylene production in control or elicitor-treated cells, indicating that the enzyme converting ACC to ethylene was limiting in both cases. The first enzyme in ethylene biosynthesis, ACC synthase, was very rapidly and transiently induced by the elicitor treatment. Its activity increased more than tenfold within 60 min. Density labelling with 2H2O showed that this increase was caused by the denovo synthesis of the enzyme protein. Cordycepin and actinomycin D did not affect the induction of ACC synthase, indicating that the synthesis of new mRNA was not required. The peak of ACC-synthase activity preceded the maximal phenylalanine ammonia-lyase (PAL) activity by several hours. Exogenously supplied ethylene or ACC did not induce PAL. However, aminoethoxyvinylglycine, an inhibitor of ACC synthase, suppressed the rise in ethylene production in elicitor-treated cells and partially inhibited the induction of PAL. Exogenously supplied ACC reversed this inhibition. It is concluded that induction of the ethylene biosynthetic pathway is a very early symptom of elicitor action. Although ethylene alone is not a sufficient signal for PAL induction, the enhanced activity of ACC synthase and the ethylene biosynthetic pathway may be important for the subsequent induction of PAL.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - PAL phenylalanine ammonia-lyase  相似文献   

13.
Guy  Micha  Kende  Hans 《Planta》1984,160(3):276-280
Protoplasts isolated from leaves of peas (Pisum sativum L.) and of Vicia faba L. produced 1-aminocyclopropane-1-carboxylic acid (ACC) from endogenous substrate. Synthesis of ACC and conversion of ACC to ethylene was promoted by light and inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and carbonyl cyanide m-chlorophenylhydrazone. Aminoethoxyvinylglycine inhibited ethylene synthesis to a minor extent when given during incubation of the protoplasts but was very effective when added both to the medium in which the protoplasts were isolated and to the incubation medium as well. Radioactivity from [U-14C]methionine was incorporated into ACC and ethylene. However, the specific radioactivity of the C-2 and C-3 atoms of ACC, from which ethylene is formed, increased much faster than the specific radioactivity of ethylene. It appears that ACC and ethylene are synthesized in different compartments of the cell and that protoplasts constitute a suitable system to study this compartmentation.Abbreviations ACC 1-Aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglycine - CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

14.
Yu YB  Yang SF 《Plant physiology》1979,64(6):1074-1077
Auxin is known to stimulate greatly both C2H4 production and the conversion of methionine to ethylene in vegetative tissues, while amino-ethoxyvinylglycine (AVG) or Co2+ ion effectively block these processes. To identify the step in the ethylene biosynthetic pathway at which indoleacetic acid (IAA) and AVG exert their effects, [3-14C]methionine was administered to IAA or IAA-plus-AVG-treated mung bean hypocotyls, and the conversion of methionine to S-adenosylmethionine (SAM), 1-amino-cyclopropane-1-carboxylic acid (ACC), and C2H4 was studied. The conversion of methionine to SAM was unaffected by treatment with IAA or IAA plus AVG, but active conversion of methionine to ACC was found only in tissues which were treated with IAA and which were actively producing ethylene. AVG treatment abolished both the conversion of methionine to ACC and ethylene production. These results suggest that in the ethylene biosynthetic pathway (methionine → SAM → ACC → C2H4) IAA stimulates C2H4 production by inducing the synthesis or activation of ACC synthase, which catalyzes the conversion of SAM to ACC. Indeed, ACC synthase activity was detected only in IAA-treated tissues and its activity was completely inhibited by AVG. This conclusion was supported by the observation that endogenous ACC accumulated after IAA treatment, and that this accumulation was completely eliminated by AVG treatment. The characteristics of Co2+ inhibition of IAA-dependent and ACC-dependent ethylene production were similar. The data indicate that Co2+ exerts its effect by inhibiting the conversion of ACC to ethylene. This conclusion was further supported by the observation that when Co2+ was administered to IAA-treated tissues, endogenous ACC accumulated while ethylene production declined.  相似文献   

15.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

16.
The chickpea (Cicer arietinum L.) cv. HC-1 was raised in earthen pots filled with dune sand in screenhouse. At vegetative stage, i.e. 40 – 45 d after sowing, 10, 20 and 40 mM NO3 was applied through rooting medium. After 24 h of NO3 treatments an ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG) in concentration 5 M was given. A conspicuous increase in (5 – 9 fold) ethylene evolution in nodules was noticed after NO3 treatments. This rise was parallel to the increase in 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC oxidase activity. On the contrary, a sharp decline in ACC content, ACC oxidase activity and ethylene evolution was observed when AVG was given. A decrease of in acetylene reduction assay (ARA) with NO3 treatments was associated with decline in cytosolic pH (from 6.12 to 5.45), leghemoglobin (Lb) content, accumulation of H2O2 and with the loss of membrane integrity. The lipid peroxidation, followed as MDA production and electrolyte leakage increased with NO3 treatments, however, the level of MDA was brought down in AVG-treated nodules. Results confirm that ethylene might be involved in mechanism by which the functioning of nodules is adversely affected by NO3 .  相似文献   

17.
Homogenates of hypocotyls of light-grown mung-bean (Vigna radiata (L.) Wilczek) seedlings catalyzed the formation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) from the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-coenzyme A. Apparent Km values for ACC and malonyl-CoA were found to be 0.17 mM and 0.25 mM, respectively. Free coenzyme A was an uncompetitive inhibitor with respect to malonyl-CoA (apparent Ki=0.3 mM). Only malonyl-CoA served as an effective acyl donor in the reaction. The d-enantiomers of unpolar amino acids inhibited the malonylation of ACC. Inhibition by d-phenylalanine was competitive with respect to ACC (apparent Ki=1.2 mM). d-Phenylalanine and d-alanine were malonylated by the preparation, and their malonylation was inhibited by ACC. When hypocotyl segments were administered ACC in the presence of certain unpolar d-amino acids, the malonylation of ACC was inhibited while the production of ethylene was enhanced. Thus, a close-relationship appears to exist between the malonylation of ACC and d-amino acids. The cis- as well as the trans-diastereoisomers of 2-methyl- or 2-ethyl-substituted ACC were potent inhibitors of the malonyltransferase. Treatment of hypocotyl segments with indole-3-acetic acid or CdCl2 greatly increased their content of ACC and MACC, as well as their release of ethylene, but had little, or no, effect on their extractable ACC-malonylating activity.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

18.
The plants of chickpea (Cicer arietinum L.) cv. HC-1 were raised in earthen pots filled with 5 kg washed river sand under natural conditions of the screen house. Forty to forty-five days after sowing, the roots were exposed to 10, 20 and 40 mM NO3 through rooting medium with the aim for studying NO3 induced changes in ethylene production and root functioning. Aminoethoxyvinylglycine (AVG, 5 μM), an ethylene biosynthesis inhibitor, was added after 24 h of NO3 treatments. Three days after the treatments, NO3 applied at 10 mM induced a significant increase in 1-amino cyclopropane-1-carboxylic acid (ACC) content (49 %) and in vivo ACC oxidase activity (100 %) which were associated with an increase in ethylene production (25 %) and with an important increase in both H2O2 (60 %) and malondialdehyde (MDA, 1 270 %). In contrast, supply of NO3 at 40 mM resulted in an important increase in ethylene production (400 %) by inducing significant enhancement of ACC content (123 %), ACC oxidase activity (128 %) and with simultaneous increase of H2O2 (160 %) and MDA (1 900 %). The reversible membrane alteration showed a linear correlation with ethylene production. This was confirmed by a sharp decline in NO3 induced ethylene evolution by AVG. An oxidative damage by NO3 to the defence mechanism was evident from the increase in H2O2 content which is apparent from the decrease in activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11) and glutathione reductase (EC 1.11.1.9) to 23–67, 39–43, 33–55 and 26–45 %, respectively. The AVG treatment showed partial recovery in the activities of these enzymes and decrease in H2O2 content (17–32 %). It is inferred that ethylene evolution due to NO3 is the key marker interfering with the functioning of roots along with the weakening of antioxidant defence mechanism.  相似文献   

19.
Enhanced ethylene production and leaf epinasty are characteristic responses of tomato (Lycopersicon esculentum Mill.) to waterlogging. It has been proposed (Bradford, Yang 1980 Plant Physiol 65: 322-326) that this results from the synthesis of the immediate precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), in the waterlogged roots, its export in the transpiration stream to the shoot, and its rapid conversion to ethylene. Inhibitors of the ethylene biosynthetic pathway are available for further testing of this ACC transport hypothesis: aminooxyacetic acid (AOA) or aminoethoxyvinylglycine (AVG) block the synthesis of ACC, whereas CO2+ prevents its conversion to ethylene. AOA and AVG, supplied in the nutrient solution, were found to inhibit the synthesis and export of ACC from anaerobic roots, whereas Co2+ had no effect, as predicted from their respective sites of action. Transport of the inhibitors to the shoot was demonstrated by their ability to block wound ethylene synthesis in excised petioles. All three inhibitors reduced petiolar ethylene production and epinasty in anaerobically stressed tomato plants. With AOA and AVG, this was due to the prevention of ACC import from the roots as well as inhibition of ACC synthesis in the petioles. With Co2+, conversion of both root- and petiole-synthesized ACC to ethylene was blocked. Collectively, these data support the hypothesis that the export of ACC from low O2 roots to the shoot is an important factor in the ethylene physiology of waterlogged tomato plants.  相似文献   

20.
Summary The role of ethylene and putrescine on shoot regeneration from hypocotyl explants of Chinese radish (Raphanus sativus L. var. longipinnatus Bailey cv. Red Coat) was investigated. Explants were recalcitrant in culture, but exogenous application of ethylene inhibitor [20–30 M aminoethoxyvinylglycine (AVG) or AgNO3] enhanced shoot regeneration of explants grown on medium supplemented with 2 mg/l N6-benzyladenine and 1 mg/l 1-naphthaleneacetic acid. The best regeneration occurred in the medium containing AgNO3 in combination with AVG. Culture medium solidified with agarose in the presence of AgNO3 but not AVG was also beneficial to shoot regeneration. Exogenous putrescine, 2-chloroethylphosphonic acid and 1-aminocyclopropane-1-carboxylate had no effect on shoot regeneration. However, regeneration was greatly promoted by 10–25 mM putrescine in combination with 30 M AgNO3 or AVG. Explants with high regenerability grown in the presence of AgNO3 or in combination with putrescine emanated high levels of ethylene throughout the 21-d culture period. By contrast, AVG or putrescine alone resulted in a decrease in ethylene production. For rooting of shoot cuttings, IAA and IBA at 1–5 mg/l were more effective than NAA.Abbreviations ACC 1-aminocyclopropane-1-carboxylate - AVG aminoethoxyvinylglycine - BA N6-benzyladenine - CEPA 2-chloroethylphosphonic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - MS Murashige and Skoog (1962) medium - NAA 1-naphthaleneacetic acid - PAs polyamines - SAM S-adenosyl-L-methionine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号