首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two strategies were aimed at identifying immunogenically optimized peptides for the potential use in the formulation of an effective prophylactic or therapeutic HIV-1 vaccine. Three CTL epitopes were investigated: Gag p24(19-27) TV9, Gag p17(77-85) SL9, and RT(309-317) IV9. The first strategy derives from the hypothesis that a number of rare mutant CTL epitopes of HIV-1 may be more immunogenic than the common ones. As such, these rare mutant sequences might be highly effective in generating cross reactive anti-HIV-1 CTL responses against a range of mutant sequences. As anticipated, several rare mutant peptide sequences were identified that generated strong CTL responses against both the consensus sequences and several naturally occurring mutants in human PBL cultures primed ex vivo and in HLA-A2 transgenic mice immunized in vivo. Finally, to reach beyond the sequence diversity of the "natural" library of mutated sequences, a synthetic combinatorial peptide library was screened with a TV9 specific T-cell line; this resulted in the identification of an immunogenically optimized mimic peptide sequence that provoked highly effective CTL immune responses against TV9 and mutants. Sequence homologies between the natural mutants and synthetic mimic may provide insight into key contact positions in the MHC/TCR/peptide complex.  相似文献   

2.
The delineation of the minimal requirements for efficient delivery of functional cytotoxic epitopes into APC could be a step toward the definition of "minimal length" lipopeptides for the modulation of CTL activity. Several analogues of the HLA-A*0201-restricted HIV-1 polymerase (pol476-484) minimal cytotoxic epitope were obtained by modifying P0, P1, or P10 positions by a single N epsilon-palmitoyl-lysine residue. The use of fluorescent derivatives confirmed the cell-permeating activities and suggested that a P0- and a P1-modified lipopeptide possessing ionizable extremities fulfills the structural requirements for MHC loading. The expressions of HLA-peptide complexes at the surface of TAP-deficient cells incubated with the parent epitope or lipopeptide derivatives were compared, in terms of intensity and stability. Both lipopeptides induced a considerably prolonged expression of conformationally correct complexes, which were dependent on the integrity of the exocytosis pathway, suggesting a dynamic mechanism of formation or reloading of the complexes from an intracellular pool. The agonistic activities of the different HLA-peptide complexes were evaluated using two independent T cell lines from HIV-infected donors. We report that a lipodecapeptide obtained by N-terminal addition of a N epsilon-palmitoyl-lysine to the pol476-484 epitope was able to increase the life span of functional presentation to cytotoxic T cells specific for the parent peptide.  相似文献   

3.
Prostate-specific antigen (PSA) is a potentially useful antigen for targeted T-cell immunotherapy of prostate cancer (CaP). Our laboratory has identified a synthetic nonamer peptide (PSA 146-154) homologue of PSA, which binds to the prevalent human leukocyte antigen, HLA-A2, and elicits specific cytotoxic T-lymphocyte (CTL) responses from normal individuals of the HLA-A2 phenotype. In the present study, we report on the induction of CTL from peripheral blood mononuclear cells (PBMC) of patients with hormone-refractory CaP, which exhibit the same specificity. T-cell lines were established from two patients by stimulation of PBMC with PSA 146-154 peptide in vitro. The T-cell lines exhibited specific cytolytic activity against T2 cells pulsed with PSA 146-154 peptide, but not a control HLA-A2 binding peptide (HIV-RT 476-484) via chromium release assay (CRA). The T-cell lines also showed PSA 146-154 peptide-specific IL-4 responses, but no detectable interferon-gamma (IFN-gamma) responses via enzyme-linked immuno-spot assays. Magnetic immuno-selection studies of one of the T-cell lines demonstrated that both cytolytic and interleukin-4 (IL-4) responses were mediated by CD8(+), but not by CD4(+) T cells. This Tc2 line was further characterized for the ability to recognize endogenously processed PSA epitopes. The line specifically secreted IL-4 in response to HLA-A2(+) target cells transfected to express PSA and specifically lysed the PSA(+) target cells, but not control transfected cells. The results indicate that the PSA 146-154 peptide emulates a naturally processed and presented peptide epitope of PSA that is within the T-cell repertoire of HLA-A2(+)patients with CaP.  相似文献   

4.
5.
Human immunodeficiency virus (HIV)-specific cytotoxic T lymphocytes (CTL) play a major role in control of viral replication. To understand the contribution of this antiviral response, an initial step is to fully define the specific epitopes targeted by CTL. These studies focused on CTL responses restricted by HLA-A*3002, one of the HLA-A molecules most prominent in African populations. To avoid the time-consuming effort and expense involved in culturing CTL prior to defining epitopes and restricting alleles, we developed a method combining Elispot assays with intracellular gamma interferon staining of peripheral blood mononuclear cells to first map the optimal epitopes targeted and then define the HLA restriction of novel epitopes. In two A*3002-positive subjects whose CTL responses were characterized in detail, the strongest response in both cases was to an epitope in p17 Gag, RSLYNTVATLY (residues 76 to 86). Using this method, CTL epitopes for which there were no motif predictions were optimized and the HLA restriction was established within 48 to 72 h of receipt of blood. This simple and convenient approach should prove useful especially in the characterization of CTL responses specific to HIV and other viruses, particularly in localities where performing cytotoxicity assays would be problematic.  相似文献   

6.
Hemi-exon shuffling and site-directed mutagenesis have been used to determine which amino acid differences between HLA-A2.1 and HLA-A2.2 alter the CTL-defined epitopes on these two molecules. Two genes were constructed that encode novel molecules in which the effect of amino acid differences at residues 9, 43, and 95, or at residue 156 could be separately evaluated. Using both human and murine CTL that were specific for either HLA-A2.1 or HLA-A2.2, four types of epitopes were identified: 1) epitopes that were insensitive to substitutions at either residues 9, 43, and 95, or residue 156 but were lost when all four positions were changed; 2) epitopes that were dependent on the residues 9, 43, 95, but not residue 156; 3) epitopes that were dependent on residue 156, but not amino acid residues 9, 43, and 95; and 4) epitopes that were dependent on residues 9, 43, and 95, as well as amino acid residue 156. Overall, there was a roughly equal distribution of clones recognizing each of these types of epitopes. Additional molecules were constructed by hemi-exon shuffling between the HLA-A2.2 and HLA-A2.3 genes, and by site-directed mutagenesis, to analyze the epitopes recognized by two HLA-A2.2/A2.1 cross-reactive murine CTL that do not recognize HLA-A2.3. Although the epitopes recognized by these CTL were unaffected by changes occurring at residues 9, 43, and 95, or at residues 149, 152, and 156 alone, simultaneous changes in both of these regions acted in concert to destroy the epitopes. Both of the CTL recognized epitopes that were lost when substitutions were made at residues 9, 43, 95, 149, and 152. The epitope recognized by one of the CTL was also destroyed by the substitution of residues 9, 43, 95, 152, and 156. Overall, these results indicate that residues 9, 43, and 95, as well as residues in the alpha-helical region of the molecule, are all capable of contributing to the definition of the epitopes recognized by HLA-A2.1- and HLA-A2.2-specific CTL. They further indicate that some epitopes can be mapped to a particular region of the molecule, whereas other epitopes are formed through a complex interaction of residues in distant regions of the molecule.  相似文献   

7.
Fine mapping of human cytotoxic T lymphocyte (CTL) responses against hepatitis C virus (HCV) is based on external loading of target cells with synthetic peptides which are either derived from prediction algorithms or from overlapping peptide libraries. These strategies do not address putative host and viral mechanisms which may alter processing as well as presentation of CTL epitopes. Therefore, the aim of this proof-of-concept study was to identify naturally processed HCV-derived major histocompatibility complex (MHC) class I ligands. To this end, continuous human cell lines were engineered to inducibly express HCV proteins and to constitutively express high levels of functional HLA-A2. These cell lines were recognized in an HLA-A2-restricted manner by HCV-specific CTLs. Ligands eluted from HLA-A2 molecules isolated from large-scale cultures of these cell lines were separated by high performance liquid chromatography and further analyzed by electrospray ionization quadrupole time of flight mass spectrometry (MS)/tandem MS. These analyses allowed the identification of two HLA-A2-restricted epitopes derived from HCV nonstructural proteins (NS) 3 and 5B (NS31406–1415 and NS5B2594–2602). In conclusion, we describe a general strategy that may be useful to investigate HCV pathogenesis and may contribute to the development of preventive and therapeutic vaccines in the future.  相似文献   

8.
To evaluate the impact of the diversity of antigen recognition by T lymphocytes on disease pathogenesis, we must be able to identify and analyze simultaneously cytotoxic T-lymphocyte (CTL) responses specific for multiple viral epitopes. Many of the studies of the role of CD8(+) CTLs in AIDS pathogenesis have been done with simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys. These studies have frequently made use of the well-defined SIV Gag CTL epitope p11C,C-M presented to CTL by the HLA-A homologue molecule Mamu-A*01. In the present study we identified and fine mapped two novel Mamu-A*01-restricted CTL epitopes: the SIVmac Pol-derived epitope p68A (STPPLVRLV) and the human immunodeficiency virus type 1 (HIV-1) Env-derived p41A epitope (YAPPISGQI). The frequency of CD8(+) CTLs specific for the p11C,C-M, p68A, and p41A epitopes was quantitated in the same animals with a panel of tetrameric Mamu-A*01/peptide/beta2m complexes. All SHIV-infected Mamu-A*01(+) rhesus monkeys tested had a high frequency of SIVmac Gag-specific CTLs to the p11C,C-M epitope. In contrast, only a fraction of the monkeys tested had detectable CTLs specific for the SIVmac Pol p68A and HIV-1 Env p41A epitopes, and these responses were detected at very low frequencies. Thus, the p11C,C-M-specific CD8(+) CTL response is dominant and the p41A- and p68A-specific CD8(+) CTL responses are nondominant. These results indicate that CD8(+) CTL responses to dominant CTL epitopes can be readily quantitated with the tetramer technology; however, CD8(+) CTL responses to nondominant epitopes, due to the low frequency of these epitope-specific cells, may be difficult to detect and quantitate by this approach.  相似文献   

9.
Human CD8+ CTL specific for the mycobacterial major secreted antigen 85A   总被引:9,自引:0,他引:9  
The role of CD8(+) CTL in protection against tuberculosis in human disease is unclear. In this study, we stimulated the peripheral blood mononuclear cells of bacillus Calmette-Guérin (BCG)-vaccinated individuals with live Mycobacterium bovis BCG bacilli to establish short-term cell lines and then purified the CD8(+) T cells. A highly sensitive enzyme-linked immunospot (ELISPOT) assay for single cell IFN-gamma release was used to screen CD8(+) T cells with overlapping peptides spanning the mycobacterial major secreted protein, Ag85A. Three peptides consistently induced a high frequency of IFN-gamma responsive CD8(+) T cells, and two HLA-A*0201 binding motifs, P(48-56) and P(242-250), were revealed within the core sequences. CD8(+) T cells responding to the 9-mer epitopes were visualized within fresh blood by ELISPOT using free peptide or by binding of HLA-A*0201 tetrameric complexes. The class I-restricted CD8(+) T cells were potent CTL effector cells that efficiently lysed an HLA-A2-matched monocyte cell line pulsed with peptide as well as autologous macrophages infected with Mycobacterium tuberculosis or recombinant vaccinia virus expressing the whole Ag85A protein. Tetramer assays revealed a 6-fold higher frequency of peptide-specific T cells than IFN-gamma ELISPOT assays, indicating functional heterogeneity within the CD8(+) T cell population. These results demonstrate a previously unrecognized, MHC class I-restricted, CD8(+) CTL response to a major secreted Ag of mycobacteria and supports the use of Ag85A as a candidate vaccine against tuberculosis.  相似文献   

10.
Epitope-based vaccines designed to induce CTL responses specific for HIV-1 are being developed as a means for addressing vaccine potency and viral heterogeneity. We identified a set of 21 HLA-A2, HLA-A3, and HLA-B7 restricted supertype epitopes from conserved regions of HIV-1 to develop such a vaccine. Based on peptide-binding studies and phenotypic frequencies of HLA-A2, HLA-A3, and HLA-B7 allelic variants, these epitopes are predicted to be immunogenic in greater than 85% of individuals. Immunological recognition of all but one of the vaccine candidate epitopes was demonstrated by IFN-gamma ELISPOT assays in PBMC from HIV-1-infected subjects. The HLA supertypes of the subjects was a very strong predictor of epitope-specific responses, but some subjects responded to epitopes outside of the predicted HLA type. A DNA plasmid vaccine, EP HIV-1090, was designed to express the 21 CTL epitopes as a single Ag and tested for immunogenicity using HLA transgenic mice. Immunization of HLA transgenic mice with this vaccine was sufficient to induce CTL responses to multiple HIV-1 epitopes, comparable in magnitude to those induced by immunization with peptides. The CTL induced by the vaccine recognized target cells pulsed with peptide or cells transfected with HIV-1 env or gag genes. There was no indication of immunodominance, as the vaccine induced CTL responses specific for multiple epitopes in individual mice. These data indicate that the EP HIV-1090 DNA vaccine may be suitable for inducing relevant HIV-1-specific CTL responses in humans.  相似文献   

11.
MHC-I-restricted CTL responses of H-2(d) (L(d+) or L(d-)) and F(1) H-2(dxb) mice to hepatitis B surface Ag (HBsAg) are primed by either DNA vaccines or HBsAg particles. The D(d)/S(201-209) and K(d)/S(199-208) epitopes are generated by processing endogenous HBsAg; the K(b)/S(208-215) epitope is generated by processing exogenous HBsAg; and the L(d)/S(28-39) epitope is generated by exogenous as well as endogenous processing of HBsAg. DNA vaccination primed high numbers of CTL specific for the L(d)/S(28-39) HBsAg epitope, low numbers of CTL specific for the D(d)/S(201-209) or K(d)/S(199-208) HBsAg epitopes in BALB/c mice, and high numbers of D(d)/S(201-209)- and K(d)/S(199-208)-specific CTL in congenic H-2(d)/L(d-) dm2 mice. In F(1)(dxb) mice, the K(d)-, D(d)-, and K(b)-restricted CTL responses to HBsAg were strikingly suppressed in the presence but efficiently elicited in the absence of L(d)/S(28-39)-specific CTL. Once primed, the K(d)- and D(d)-restricted CTL responses to HBsAg were resistant to suppression by immunodominant L(d)/S(28-39)-specific CTL. The L(d)-restricted immunodominant CTL reactivity to HBsAg can thus suppress priming to multiple alternative epitopes of HBsAg, independent of the processing pathway that generates the epitope, of the background of the mouse strain used, and of the presence/absence of different allelic variants of the K and D MHC class I molecules.  相似文献   

12.
Characterization of optimal CTL epitopes in Gag can provide crucial information for evaluation of candidate vaccines in populations at the epicenter of the HIV-1 epidemic. We screened 38 individuals with recent subtype C HIV-1 infection using overlapping consensus C Gag peptides and hypothesized that unique HLA-restricting alleles in the southern African population would determine novel epitope identity. Seventy-four percent of individuals recognized at least one Gag peptide pool. Ten epitopic regions were identified across p17, p24, and p2p7p1p6, and greater than two-thirds of targeted regions were directed at: TGTEELRSLYNTVATLY (p17, 35%); GPKEPFRDYVDRFFKTLRAEQATQDV (p24, 19%); and RGGKLDKWEKIRLRPGGKKHYMLKHL (p17, 15%). After alignment of these epitopic regions with consensus M and a consensus subtype C sequence from the cohort, it was evident that the regions targeted were highly conserved. Fine epitope mapping revealed that five of nine identified optimal Gag epitopes were novel: HLVWASREL, LVWASRELERF, LYNTVATLY, PFRDYVDRFF, and TLRAEQATQD, and were restricted by unique HLA-Cw*08, HLA-A*30/B*57, HLA-A*29/B*44, and HLA-Cw*03 alleles, respectively. Notably, three of the mapped epitopes were restricted by more than one HLA allele. Although these epitopes were novel and restricted by unique HLA, they overlapped or were embedded within previously described CTL epitopes from subtype B HIV-1 infection. These data emphasize the promiscuous nature of epitope binding and support our hypothesis that HLA diversity between populations can shape fine epitope identity, but may not represent a constraint for universal recognition of Gag in highly conserved domains.  相似文献   

13.
14.
The repertoire of human cytotoxic T-lymphocytes (CTL) in response to influenza A viruses has been shown to be directed towards multiple epitopes, with a dominant response to the HLA-A2-restricted M1(58-66) epitope. These studies, however, were performed with peripheral blood mononuclear cells (PBMC) of individuals selected randomly with respect to HLA phenotype or selected for the expression of one HLA allele without considering an influence of other HLA molecules. In addition, little information is available on the influence of HLA makeup on the overall CTL response against influenza viruses. Here, the influenza A virus-specific CTL response was investigated in groups of HLA-A and -B identical individuals. Between groups the individuals shared two or three of the four HLA-A and -B alleles. After in vitro stimulation of PBMC with influenza virus, the highest CTL activity was found in HLA-A2(+) donors. A similar pattern was observed for the precursor frequency of virus-specific CTL (CTLp) ex vivo, with a higher CTLp frequency in HLA-A2-positive donors than in HLA-A2-negative donors, which were unable to recognize the immunodominant M1(58-66) epitope. In addition, CTL activity and frequency of CTLp for the individual influenza virus epitopes were determined. The frequency of CTLp specific for the HLA-B8-restricted epitope NP(380-388) was threefold lower in HLA-B27-positive donors than in HLA-B27-negative donors. In addition, the frequency of CTLp specific for the HLA-A1-restricted epitope NP(44-52) was threefold higher in HLA-A1-, -A2-, -B8-, and -B35-positive donors than in other donors, which was confirmed by measuring the CTL activity in vitro. These findings indicate that the epitope specificity of the CTL response is related to the phenotype of the other HLA molecules. Furthermore, the magnitude of the influenza virus-specific CTL response seems dependent on the HLA-A and -B phenotypes.  相似文献   

15.
Immune escape from cytotoxic T-lymphocyte (CTL) responses has been shown to occur not only by changes within the targeted epitope but also by changes in the flanking sequences which interfere with the processing of the immunogenic peptide. However, the frequency of such an escape mechanism has not been determined. To investigate whether naturally occurring variations in the flanking sequences of an immunodominant human immunodeficiency virus type 1 (HIV-1) Gag CTL epitope prevent antigen processing, cells infected with HIV-1 or vaccinia virus constructs encoding different patient-derived Gag sequences were tested for recognition by HLA-A*0201-restricted, p17-specific CTL. We found that the immunodominant p17 epitope (SL9) and its variants were efficiently processed from minigene expressing vectors and from six HIV-1 Gag variants expressed by recombinant vaccinia virus constructs. Furthermore, SL9-specific CTL clones derived from multiple donors efficiently inhibited virus replication when added to HLA-A*0201-bearing cells infected with primary or laboratory-adapted strains of virus, despite the variability in the SL9 flanking sequences. These data suggest that escape from this immunodominant CTL response is not frequently accomplished by changes in the epitope flanking sequences.  相似文献   

16.
The immunogenicity of HLA-A*0201-restricted cytotoxic T lymphocyte (CTL) peptide in severe acute respiratory syndrome coronavirus (SARS-CoV) nuclear capsid (N) and spike (S) proteins was determined by testing the proteins' ability to elicit a specific cellular immune response after immunization of HLA-A2.1 transgenic mice and in vitro vaccination of HLA-A2.1 positive human peripheral blood mononuclearcytes (PBMCs). First, we screened SARS N and S amino acid sequences for allele-specific motif matching those in human HLA-A2.1 MHC-I molecules. From HLA peptide binding predictions (http://thr.cit.nih.gov/molbio/hla_bind/), ten each potential N- and S-specific HLA-A2.1-binding peptides were synthesized. The high affinity HLA-A2.1 peptides were validated by T2-cell stabilization assays, with immunogenicity assays revealing peptides N223-231, N227-235, and N317-325 to be the first identified HLA-A*0201-restricted CTL epitopes of SARS-CoV N protein. In addition, previous reports identified three HLA-A*0201-restricted CTL epitopes of S protein (S978-986, S1203-1211, and S1167-1175), here we found two novel peptides S787-795 and S1042-1050 as S-specific CTL epitopes. Moreover, our identified N317-325 and S1042-1050 CTL epitopes could induce recall responses when IFN-gamma stimulation of blood CD8+ T-cells revealed significant difference between normal healthy donors and SARS-recovered patients after those PBMCs were in vitro vaccinated with their cognate antigen. Our results would provide a new insight into the development of therapeutic vaccine in SARS.  相似文献   

17.
18.
Identification of CD8+ T cell epitopes that can induce T cells to kill tumor cells is a fundamental step for development of a peptide cancer vaccine. POTE protein is a newly identified cancer antigen that was found to be expressed in a wide variety of human cancers, including prostate, colon, lung, breast, ovary and pancreas. Here, we determined HLA-A2.1-restricted cytotoxic T lymphocyte (CTL) epitopes in the POTE protein, and also designed enhanced epitopes by amino acid (AA) substitutions. Five 9-mer peptides were first selected and their binding affinity to HLA-A2 molecules was measured by the T2 binding assay. POTE 272–280 and POTE 323–331 showed the strongest HLA-A2 binding affinity. AA substituted peptides POTE 252-9V (with valine at position 9), POTE 553-1Y (with tyrosine at position 1) and POTE 323-3F (with phenylalanine at position 3) conferred higher affinity for HLA-A2, and induced CTL responses cross-reactive with wild type antigens. While POTE 252-9V was the strongest in this respect, POTE 323-3F had the greatest increase in immunogenicity compared to wild type. Importantly, two modified epitopes (POTE-553-1Y and POTE-323-3F) induced CTLs that killed NCI-H522, a POTE-expressing HLA-A2+ human non-small cell lung cancer cell line, indicating natural endogenous processing of these epitopes. In conclusion, the immunogenicity of POTE epitopes can be enhanced by peptide modification to induce T cells that kill human cancer cells. A combination of POTE 553-1Y and POTE 323-3F epitopes might be an attractive vaccine strategy for HLA-A2 cancer patients to overcome tolerance induced by tumors and prevent escape.  相似文献   

19.
A human alloimmune cytotoxic T lymphocyte (CTL) clone (4E4) was generated against the HLA-A2 molecule. Lysis of 51Cr-labeled HLA-A2 target cells was blocked by monoclonal antibodies (mAb), including mAb PA2.1 (anti-HLA-A2), mAb BB7.2 (anti-HLA-A2), mAb 4B (anti-HLA-A2-plus-A28), mAb MA2.1 (anti-HLA-A2-plus-B17), and mAb W6/32 (anti-HLA-A,B,C), which are directed against different serologic epitopes on the HLA-A2 molecule. However, HLA-A2 mutant lines lacking the serologic epitope recognized by mAb BB7.2 (anti-HLA-A2) were efficiently lysed by CTL 4E4. Thus, although mAb may block cytolysis, the HLA-A2 epitope recognized the 4E4 CTL clone is distinct from the HLA-A2-specific epitope recognized by serologic reagents. Moreover, analysis of HLA-A2 population variants revealed that only the predominant HLA-A2.1 subtype molecule was recognized by CTL 4E4. No cross-reactivity on other, biochemically related HLA-A2 population subtypes was observed, including HLA-A2.2 cells (Hill, CVE, ZYL, M7), HLA-A2.3 cells (TENJ, DK1), or HLA-A2.4 cells (CLA, KNE). This CTL clone appears to recognize a single epitope and, like monoclonal antibody counterparts, can be used to discriminate among immunogenic cellular and serologic epitopes on closely related HLA-A2 molecules. On the basis of the known sequence changes in mutant and subtype HLA-A2 molecules, it appears that the sequence spanning residues 147 to 157 may be critical for cellular recognition of this Class I MHC molecule.  相似文献   

20.
To detect HLA-binding peptides in 10 HIV-1 proteins (Rev, Tat, Vif, Vpr, Vpu, Gag p18, Gag p24, Gag p15, Env gp120 and Env gp41), the peptide binding assay (PBA) has been performed using three HLA class I molecules. Correlations have been searched between the PBA results and the peptide competitor activity in a functional test using HLA-A2-restricted CTL and target cells. A correlation between the data found in the PBA and well-defined CTL epitopes could be attempted only for the three Gag proteins. For these proteins, our results are in agreement with the known existence of epitopes reacting with human CD8+ CTL, with some exceptions. Together with the results reported with a panel of Nef peptides, these experiments showed that at least 18/20 of the already reported CTL epitopes from HIV-1 Gag, Nef, and Env proteins could be detected by the PBA, most (17/18) corresponding to strong reactivities. Perhaps more important, the regions of HIV-1 Gag p24 or Nef proteins that contain multiple associated CTL epitopes, with different HLA restrictions, were clearly identified by the reactivities in the PBA of several overlapping peptides and the major practical interest of the PBA might be the detection of such polyepitopic regions. Prediction are proposed in this report for 10 proteins, including several proteins for which CTL epitopes remain presently unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号