首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have selected 210 mutants able to grow on sucrose in the presence of 2-deoxyglucose. We identified recessive mutations in three major complementation groups that cause constitutive (glucose-insensitive) secreted invertase synthesis. Two groups comprise alleles of the previously identified HXK2 and REG1 genes, and the third group was designated cid1 (constitutive invertase derepression). The effect of cid1 on SUC2 expression is mediated by the SUC2 upstream regulatory region, as judged by the constitutive expression of a SUC2-LEU2-lacZ fusion in which the LEU2 promoter is under control of SUC2 upstream sequences. A cid1 mutation also causes glucose-insensitive expression of maltase. The previously isolated constitutive mutation ssn6 is epistatic to cid1, reg1 and hxk2 for very high level constitutive invertase expression. Mutations in SNF genes that prevent derepression of invertase are epistatic to cid1, reg1 and hxk2; we have previously shown that ssn6 has different epistasis relationships with snf mutations. The constitutive mutation tup1 was found to resemble ssn6 in its genetic interactions with snf mutations. These findings suggest that CID1, REG1 and HXK2 are functionally distinct from SSN6 and TUP1.  相似文献   

4.
Mutants of Saccharomyces cerevisiae with defects in sucrose or raffinose fermentation were isolated. In addition to mutations in the SUC2 structural gene for invertase, we recovered 18 recessive mutations that affected the regulation of invertase synthesis by glucose repression. These mutations included five new snf1 (sucrose nonfermenting) alleles and also defined five new complementation groups, designated snf2, snf3, snf4, snf5, and snf6. The snf2, snf4, and snf5 mutants produced little or no secreted invertase under derepressing conditions and were pleiotropically defective in galactose and glycerol utilization, which are both regulated by glucose repression. The snf6 mutant produced low levels of secreted invertase under derepressing conditions, and no pleiotropy was detected. The snf3 mutants derepressed secreted invertase to 10-35% the wild-type level but grew less well on sucrose than expected from their invertase activity; in addition, snf3 mutants synthesized some invertase under glucose-repressing conditions.--We examined the interactions between the different snf mutations and ssn6, a mutation causing constitutive (glucose-insensitive) high-level invertase synthesis that was previously isolated as a suppressor of snf1. The ssn6 mutation completely suppressed the defects in derepression of invertase conferred by snf1, snf3, snf4 and snf6, and each double mutant showed the constitutivity for invertase typical of ssn6 single mutants. In contrast, snf2 ssn6 and snf5 ssn6 strains produced only moderate levels of invertase under derepressing conditions and very low levels under repressing conditions. These findings suggest roles for the SNF1 through SNF6 and SSN6 genes in the regulation of SUC2 gene expression by glucose repression.  相似文献   

5.
L. G. Vallier  M. Carlson 《Genetics》1991,129(3):675-684
To identify new genes required for depression of the SUC2 (invertase) gene in Saccharomyces cerevisiae, we have isolated mutants with defects in raffinose utilization. In addition to mutations in SUC2 and previously identified SNF genes, we recovered recessive mutations that define four new complementation groups, designated snf7 through snf10. These mutations cause defects in the derepression of SUC2 in response to glucose limitation. We also recovered five alleles of gal11 and showed that a gal11 null mutation decreases SUC2 expression to 30% of the wild-type level. Finally, one of the mutants carries a grr1 allele that converts SUC2 from a glucose-inducible gene.  相似文献   

6.
J. Tu  L. G. Vallier    M. Carlson 《Genetics》1993,135(1):17-23
Mutations in the SNF7 gene of Saccharomyces cerevisiae prevent full derepression of the SUC2 (invertase) gene in response to glucose limitation. We report the molecular cloning of the SNF7 gene by complementation. Sequence analysis predicts that the gene product is a 27-kDa acidic protein. Disruption of the chromosomal locus causes a fewfold decrease in invertase derepression, a growth defect on raffinose, temperature-sensitive growth on glucose, and a sporulation defect in homozygous diploids. Genetic analysis of the interactions of the snf7 null mutation with ssn6 and spt6/ssn20 suppressor mutations distinguished SNF7 from the SNF2, SNF5 and SNF6 genes. The snf7 mutation also behaved differently from mutations in SNF1 and SNF4 in that snf7 ssn6 double mutants displayed a synthetic phenotype of severe temperature sensitivity for growth. We also mapped SNF7 to the right arm of chromosome XII near the centromere.  相似文献   

7.
Saccharomyces cerevisiae mutants defective in growth on low glucose concentration (lgn mutants) were isolated and screened for abnormal glucose transport. Nine complementation groups were identified, falling into two broad groups: those unable to significantly derepress high-affinity (low-Km) glucose uptake (lgn1, lgn4, lgn5, lgn7, and lgn8), and those with elevated repressed levels of high-affinity uptake that either derepress to normal or near normal levels of high-affinity uptake with loss of low-affinity transport (lgn2 and lgn3) or derepress only slightly, appearing to have an intermediate yet constitutive level of high-affinity transport (lgn6 and lgn9). Further analysis of the lgn mutations revealed pleiotropic phenotypes most consistent with the true defect being in regulation or expression of glucose repression and derepression. The kinetics of glucose uptake in strains carrying known mutations preventing derepression of glucose-repressible functions (snf1, snf2, snf4, and snf6) demonstrated that three of these mutations (snf1, snf4, and snf6) were similarly defective in derepression of high-affinity glucose uptake. The snf2 and snf5 mutations had no apparent effect on glucose uptake. Two mutations resulting in constitutive expression of glucose-repressible functions, cid1 and reg1, resulted in constitutive expression of high-affinity glucose uptake. These data support the conclusion that high-affinity glucose uptake in Saccharomyces cerevisiae is under general glucose repression control. The implications of other properties of these mutants are discussed.  相似文献   

8.
9.
10.
The SNF2 and SNF5 genes are required for derepression of SUC2 and other glucose-repressible genes of Saccharomyces cerevisiae in response to glucose deprivation. Previous genetic evidence suggested that SNF2 and SNF5 have functionally related roles. We cloned both genes by complementation and showed that the cloned DNA was tightly linked to the corresponding chromosomal locus. Both genes in multiple copy complemented only the cognate snf mutation. The SNF2 gene encodes a 5.7-kilobase RNA, and the SNF5 gene encodes a 3-kilobase RNA. Both RNAs contained poly(A) and were present in low abundance. Neither was regulated by glucose repression, and the level of SNF2 RNA was not dependent on SNF5 function or vice versa. Disruption of either gene at its chromosomal locus still allowed low-level derepression of secreted invertase activity, suggesting that these genes are required for high-level expression but are not directly involved in regulation. Further evidence was the finding that snf2 and snf5 mutants failed to derepress acid phosphatase, which is not regulated by glucose repression. The SNF2 and SNF5 functions were required for derepression of SUC2 mRNA.  相似文献   

11.
12.
Mutations in the SNF2 gene of Saccharomyces cerevisiae prevent derepression of the SUC2 (invertase) gene, and other glucose-repressible genes, in response to glucose deprivation. We have isolated 25 partial phenotypic revertants of a snf2 mutant that are able to derepress secreted invertase. These revertants all carried suppressor mutations at a single locus, designated SSN20 (suppressor of snf2). Alleles with dominant, partially dominant and recessive suppressor phenotypes were recovered, but all were only partial suppressors of snf2, reversing the defect in invertase synthesis but not other defects. All alleles also caused recessive, temperature-sensitive lethality and a recessive defect in galactose utilization, regardless of the SNF2 genotype. No significant effect on SUC2 expression was detected in a wild-type (SNF2) genetic background. The ssn20 mutations also suppressed the defects in invertase derepression caused by snf5 and snf6 mutations, and selection for invertase-producing revertants of snf5 mutants yielded only additional ssn20 alleles. These findings suggest that the roles of the SNF2, SNF5 and SNF6 genes in regulation of SUC2 are functionally related and that SSN20 plays a role in expression of a variety of yeast genes.  相似文献   

13.
14.
Addition of glucose to derepressed cells of the yeast Saccharomyces cerevisiae induces a transient, specific cAMP signal. Intracellular acidification in these cells, as caused by addition of protonophores like 2,4-dinitrophenol (DNP) causes a large, lasting increase in the cAMP level. The effect of glucose and DNP was investigated in glucose-repressed wild type cells and in cells of two mutants which are deficient in derepression of glucose-repressible proteins, cat1 and cat3. Addition of glucose to cells of the cat3 mutant caused a transient increase in the cAMP level whereas cells of the cat1 mutant and in most cases also repressed wild type cells did not respond to glucose addition with a cAMP increase. The glucose-induced cAMP increase in cat3 cells and the cAMP increase occasionally present in repressed wild type cells however could be prevented completely by addition of a very low level of glucose in advance. In derepressed wild type cells this does not prevent the specific glucose-induced cAMP signal at all. These results indicate that repressed cells do not show a true glucose-induced cAMP signal. When DNP was added to glucose-repressed wild type cells or to cells of the cat1 and cat3 mutants no cAMP increase was observed. Addition of a very low level of glucose before the DNP restored the cAMP increase which points to lack of ATP as the cause for the absence of the DNP effect. These data show that intracellular acidification is able to enhance the cAMP level in repressed cells. The glucose-induced artefactual increase occasionally observed in repressed cells is probably caused by the fact that their low intracellular pH is only restored after the ATP level has increased to such an extent that it is no longer limiting for cAMP synthesis. It is unclear why the artefactual increases are not always observed. Measurement of glucose- and DNP-induced activation of trehalase confirmed the physiological validity of the changes observed in the cAMP level. Our results are consistent with the idea that the glucose-induced signaling pathway contains a glucose-repressible protein and that the protein is located before the point where intracellular acidification triggers activation of the pathway.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DNP 2,4-dinitrophenol - Mes 4-morpholineethanesulfonic acid  相似文献   

15.
16.
The total protein content and cell size distribution of recombinantSaccharomyces cerevisiae cells were analyzed by flow cytometry. The recombinant strain containing a regulatableSUC2 promoter and the host strain were compared when grown under similar conditions in a batch culture. Recombinant and host cells maintained similar size and total protein content while cloned-gene expression was repressed by glucose levels greater than 0.2% (w/v). Following derepression, recombinant cells demonstrated a mean total protein content and mean cell size 1.5–2 times greater than that of the host cells. In addition, these simple flow cytometric measurements of the changes in cell size and total protein content were found to closely follow diauxic growth ofSaccharomyces cerevisiae in batch culture.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号