首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-resolution amplified fragment length polymorphism (AFLP) methodology was developed to achieve the delineation of closely related Lactococcus lactis strains. The differentiation depth of 24 enzyme-primer-nucleotide combinations was experimentally evaluated to maximize the number of polymorphisms. The resolution depth was confirmed by performing diversity analysis on 82 L. lactis strains, including both closely and distantly related strains with dairy and nondairy origins. Strains clustered into two main genomic lineages of L. lactis subsp. lactis and L. lactis subsp. cremoris type-strain-like genotypes and a third novel genomic lineage rooted from the L. lactis subsp. lactis genomic lineage. Cluster differentiation was highly correlated with small-subunit rRNA homology and multilocus sequence analysis (MLSA) studies. Additionally, the selected enzyme-primer combination generated L. lactis subsp. cremoris phenotype-specific fragments irrespective of the genotype. These phenotype-specific markers allowed the differentiation of L. lactis subsp. lactis phenotype from L. lactis subsp. cremoris phenotype strains within the same L. lactis subsp. cremoris type-strain-like genomic lineage, illustrating the potential of AFLP for the generation of phenotype-linked genetic markers.  相似文献   

2.
Twenty Lactococcus lactis strains with an L. lactis subsp. lactis phenotype isolated from five traditional cheeses made of raw milk with no added starters belonging to the L. lactis subsp. lactis and L. lactis subsp. cremoris genotypes (lactis and cremoris genotypes, respectively; 10 strains each) were subjected to a series of phenotypic and genetic typing methods, with the aims of determining their phylogenetic relationships and suitability as starters. Pulsed-field gel electrophoresis (PFGE) analysis of intact genomes digested with SalI and SmaI proved that all strains were different except for three isolates of the cremoris genotype, which showed identical PFGE profiles. Multilocus sequence typing (MLST) analysis using internal sequences of seven loci (namely, atpA, rpoA, pheS, pepN, bcaT, pepX, and 16S rRNA gene) revealed considerable intergenotype nucleotide polymorphism, although deduced amino acid changes were scarce. Analysis of the MLST data for the present strains and others from other dairy and nondairy sources showed that all of them clustered into the cremoris or lactis genotype group, by using both independent and combined gene sequences. These two groups of strains also showed distinctive carbohydrate fermentation and enzyme activity profiles, with the strains in the cremoris group showing broader profiles. However, the profiles of resistance/susceptibility to 16 antibiotics were very similar, showing no atypical resistance, except for tetracycline resistance in three identical cremoris genotype isolates. The numbers and concentrations of volatile compounds produced in milk by the strains belonging to these two groups were clearly different, with the cremoris genotype strains producing higher concentrations of more branched-chain, derived compounds. Together, the present results support the idea that the lactis and cremoris genotypes of phenotypic Lactococcus lactis subsp. lactis actually represent true subspecies. Some strains of the two subspecies in this study appear to be good starter candidates.  相似文献   

3.
We report the complete genome sequence of Lactococcus lactis subsp. cremoris A76, a dairy strain isolated from a cheese production outfit. Genome analysis detected two contiguous islands fitting to the L. lactis subsp. lactis rather than to the L. lactis subsp. cremoris lineage. This indicates the existence of genetic exchange between the diverse subspecies, presumably related to the technological process.  相似文献   

4.
Randomly amplified polymorphic DNA (RAPD) was used for identification of Lactococcus lactis subsp. cremoris strains isolated 40 years ago from various dairy homemade products. Total genomic DNAs from six randomly chosen isolates and the reference strain Lactococcus lactis subsp. cremoris NIZO B64 were amplified using four different 10-mer primers. Although most RAPD fragments were common to all six isolates, a sufficient number of polymorphic fragments were also detected that allowed clear distinction of the isolates and the reference strain. The results indicate that RAPD analysis could be a useful and efficient method to distinguish Lactococcus lactis subsp. cremoris at the strain level and to detect genetic diversity.  相似文献   

5.
AIMS: The aim of this study was to obtain new Lactococcus lactis strains from nondairy materials for use as milk fermentation starters. The genetic and phenotypic traits of the obtained strains were characterized and compared with those of L. lactis strains derived from milk. It was confirmed that the plant-derived bacteria could be used as milk fermentation starters. METHODS AND RESULTS: About 2600 lactic acid bacteria were subjected to screening for L. lactis with species-specific PCR. Specific DNA amplification was observed in 106 isolates. Forty-one strains were selected, including 30 strains of milk-derived and 11 of plant-derived, and their phenotypic traits and genetic profiles were determined. The plant-derived strains showed tolerance for high salt concentration and high pH value, and fermented many more kinds of carbohydrates than the milk-derived strains. There were no remarkable differences in the profiles of enzymes, such as lipases, peptidases and phosphatases. Isolates were investigated by cluster analysis based on randomly amplified polymorphic DNA profiles. There were no significant differences between isolates from milk and those from plant. The L. lactis subsp. cremoris strains were clustered into two distinct groups, one composed of the strains having the typical cremoris phenotype and the other composed of strains having a phenotype similar to subsp. lactis. Fermented milk manufactured using the plant-derived strains were not inferior in flavour to that manufactured using the milk-derived strains. CONCLUSIONS: Plant-derived L. lactis strains are genetically close to milk-derived strains but have various additional capabilities, such as the ability to ferment many additional kinds of carbohydrates and greater stress-tolerance compared with the milk-derived strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The lactic acid bacteria obtained from plants in this study may be applicable for use in the dairy product industry.  相似文献   

6.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

7.
Lactate dehydrogenase (ldh) gene sequences, levels of 16S rRNA group-specific probe binding, and phenotypic characteristics were compared for 45 environmental isolates and four commercial starter strains of Lactococcus lactis to identify evolutionary groups best suited to cheddar cheese manufacture, ldh sequences from the environmental isolates showed high similarity to those from two groups of L. lactis used for industrial fermentations, L. lactis subsp. cremoris and subsp. lactis. Within each phylogenetically defined subspecies, ldh sequence similarities were greater than 99.1%. Strains with phenotypic traits formerly diagnostic for both subspecies were found in each ldh similarity group, but only strains belonging to L. lactis subsp. cremoris by both the newer, genetic and the older, superseded phenotypic criteria were judged potentially suitable for the commercial production of cheddar cheese. Identical evolutionary relationships were inferred from ldh sequences and from binding of subspecies-specific, 16S rRNA-directed oligonucleotide probes. However, groups defined according to these chromosomal traits bore no relationship to patterns of arginine deamination, carbon substrate utilization, or bacteriophage sensitivity, which may be encoded by cryptic genes or sexually transmissible genetic elements. Fourteen new L. lactis subsp. cremoris isolates were identified as suitable candidates for cheddar cheese manufacture, and 10 of these were completely resistant to three different batteries of commercial bacteriophages known to reduce starter activity.  相似文献   

8.
9.
Lactococcus lactis subsp. lactis strains show glutamate decarboxylase activity, whereas L. lactis subsp. cremoris strains do not. The gadB gene encoding glutamate decarboxylase was detected in the L. lactis subsp. cremoris genome but was poorly expressed. Sequence analysis showed that the gene is inactivated by the frameshift mutation and encoded in a nonfunctional protein.  相似文献   

10.
Lactococcus lactis strains from the subsp. cremoris are described as more sensitive to osmotic stress than subsp. lactis strains. We examined the relation between osmotic tolerance and the activity of the betaine transporter BusA among 34 strains of L. lactis. The cremoris strains that showed reduced growth at high osmolality failed to accumulate betaine. The nature of the defect was found to vary among cremoris strains: lack of the busA encoding region, absence of synthesis or synthesis of an inactive form of BusA. The results suggest that the selection of strains well fitted to the dairy production lead to the loss of an otherwise efficient adaptation mechanism.  相似文献   

11.
The replication region of pSK11L, the lactose plasmid of Lactococcus lactis subsp. cremoris (L. cremoris) SK11, was isolated on a 14.8-kbp PvuII fragment by shotgun cloning into an Escherichia coli vector encoding erythromycin resistance and selection for erythromycin-resistant transformants of L. lactis subsp. lactis (L. lactis) LM0230. Deletion analysis and Tn5 mutagenesis of the resulting plasmid (pKMP1) further localized the replication region to a 2.3-kbp ScaI-SpeI fragment. DNA sequence analysis of this 2.3-kbp fragment revealed a 1,155-bp open reading frame encoding the putative replication protein, Rep. The replication origin was located upstream of rep and consisted of an 11-bp imperfect direct repeat and a 22-bp sequence tandemly repeated three and one-half times. The overall organization of the pSK11L replicon was remarkably similar to that of pCI305, suggesting that pSK11L does not replicate by the rolling-circle mechanism. Like pSK11L, pKMP1 was unstable in L. lactis LM0230. Deletion analysis allowed identification of several regions which appeared to contribute to the maintenance of pKMP1 in L. lactis LM0230. pKMP1 was significantly more stable in L. cremoris EB5 than in L. lactis LM0230 at all of the temperatures compared. This stability was lost by deletion of a 3.1-kbp PvuII-XbaI fragment which had no effect on stability in L. lactis LM0230. Other regions affecting stability in L. cremoris EB5 but not in L. lactis LM0230 were also identified. Stability assays conducted at various temperatures showed that pKMP1 maintenance was temperature sensitive in both L. lactis LM0230 and L. cremoris EB5, although the plasmid was more unstable in L. lactis LM0230. The region responsible for the temperature sensitivity phenotype in L. lactis LM0230 was tentatively localized to a 1.2-kbp ClaI-HindIII fragment which was distinct from the replication region of pSK11L. Our results suggest that the closely related L. lactis and L. cremoris subspecies behave differently regarding maintenance of plasmids.  相似文献   

12.
【目的】比较16S rRNA和recA、groEL基因部分序列用于乳酸乳球菌乳酸亚种和乳脂亚种分类鉴定的效果。【方法】对已鉴定的8株分离自传统发酵乳的乳酸乳球菌, 选取recA和groEL基因片段, 通过PCR扩增、测序, 将测序得到的序列比对后构建系统发育树, 并与16S rRNA基因序列分析技术进行比较。【结果】比较分析不同菌株16S rRNA和recA、groEL基因的亲缘关系, recA、groEL基因可以准确地完成乳酸乳球菌乳酸亚种和乳脂亚种的区分和鉴定。【结论】recA和groEL基因序列分析可以实现乳酸乳球菌乳酸亚种和乳脂亚种的区分, 因其具有快速、准确、稳定的特点, 可适合于乳酸乳球菌乳酸亚种和乳脂亚种间的快速分类鉴定。  相似文献   

13.
A highly efficient, rapid, and reliable PCR-based method for distinguishing Lactococcus lactis subspecies (L. lactis subsp. lactis and L. lactis subsp. cremoris) is described. Primers complementary to positions in the glutamate decarboxylase gene have been constructed. PCR analysis with extracted DNA or with cells of different L. lactis strains resulted in specific fragments. The length polymorphism of the PCR fragments allowed a clear distinction of the L. lactis subspecies. The amplified fragment length polymorphism with the primers and the restriction fragment length polymorphism of the amplified products agreed perfectly with the identification based on genotypic and phenotypic analyses, respectively. Isolates from cheese starters were investigated by this method, and amplified fragments of genetic variants were found to be approximately 40 bp shorter than the typical L. lactis subsp. cremoris fragments.  相似文献   

14.
The occurrence of the acmA gene, encoding the lactococcal N-acetylmuramidase in new lactococcal isolates from raw milk cheeses, has been determined. Isolates were genotypically identified to the subspecies level with a PCR technique. On the basis of PCR amplification of the acmA gene, the presence or absence of an additional amplicon of approximately 700 bp correlated with Lactococcus lactis subspecies. L. lactis subsp. lactis exhibits both the expected 1,131-bp product and the additional amplicon, whereas L. lactis subsp. cremoris exhibits a single 1,131-bp fragment.  相似文献   

15.
The gene specifying an endopeptidase of Lactococcus lactis, named pepO, was cloned from a genomic library of L. lactis subsp. cremoris P8-2-47 in lambda EMBL3 and was subsequently sequenced. pepO is probably the last gene of an operon encoding the binding-protein-dependent oligopeptide transport system of L. lactis. The inferred amino acid sequence of PepO showed that the lactococcal endopeptidase has a marked similarity to the mammalian neutral endopeptidase EC 3.4.24.11 (enkephalinase), whereas no obvious sequence similarity with any bacterial enzyme was found. By means of gene disruption, a pepO-negative mutant was constructed. Growth and acid production of the mutant strain in milk were not affected, indicating that the endopeptidase is not essential for growth of L. lactis in milk.  相似文献   

16.
Lactococcus lactis subsp. cremoris is widely used in the manufacture of fermented milk products. Despite numerous attempts, efforts to isolate new strains by traditional plating and identification methods have not been successful. Previously, we described oligonucleotide probes for 16S rRNAs which could be used to discriminate L. lactis subsp. cremoris from related strains. These probes were used in colony hybridization experiments to screen large numbers of colonies obtained from enrichment cultures. A total of 170 strains of L. lactis were isolated from six milk samples, two colostrum samples, and one corn sample by using oligonucleotide probe 212RLa specific for the species L. lactis. Fifty-nine of these isolates also hybridized to L. lactis subsp. cremoris-specific probe 68RCa, and 26 of the strains which hybridized to the L. lactis subsp. cremoris-specific probe had the L. lactis subsp. cremoris phenotype.  相似文献   

17.
AIMS: Five species of the Gram-positive bacterial genus Lactococcus (Lactococcus lactis, L. garvieae, L. plantarum, L. piscium and L. raffinolactis) are currently recognized. The aim of this work was to develop a simple approach for the identification of these species, as well as to differentiate the industrially important dairy subspecies L. lactis subsp. lactis and L. lactis subsp. cremoris. METHODS AND RESULTS: Methods were devised based on specific polymerase chain reaction (PCR) amplifications that exploit differences in the sequences of the 16S ribosomal RNA genes of each species, followed by restriction enzyme cleavage of the PCR products. The techniques developed were used to characterize industrial cheese starter strains of L. lactis and the results were compared with biochemical phenotype and DNA sequence data. CONCLUSIONS: The PCR primers designed can be used simultaneously, providing a simple scheme for screening unknown isolates. Strains of L. lactis show heterogeneity in the 16S ribosomal RNA gene sequence. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides an integrated set of methods for differentiation and identification of lactococcal species associated with agricultural, veterinary, medical and processed food industries.  相似文献   

18.
Diversity among lactococci isolated from ewes' raw milk and cheese   总被引:1,自引:0,他引:1  
P. GAYA, M. BABÍN, M. MEDINA and M. NUÑEZ.1999.The technological and genetic characteristics of lactococci present in ewes' raw milk and 1-d-old ewes' raw milk cheeses sampled over a 1-year period were investigated. The proportion of lactic acid bacteria isolates from milk samples able to decrease milk pH by more than 1·25 units after 6 h incubation at 30 °C reached 14·5% in spring vs 10·7% in summer, 8·3% in autumn and 3·0% in winter. In 1-d-old cheese samples, the proportion of lactic acid bacteria able to lower milk pH by more than 1·25 units increased up to 32·3% in spring vs 23·4% in summer, 8·0% in autumn and 10·3% in winter. Fast acid-producing lactic acid bacteria mainly belonged to the genus Lactococcus . Using polymerase chain reaction protocols, fast acid-producing lactococci were grouped as 61  Lactococcus lactis subsp. lactis , 13  L. lactis subsp. cremoris and 14  L. lactis subsp. lactis biovar diacetylactis. Randomly amplified polymorphic DNA (RAPD) fingerprinting of fast acid-producing lactococci, using two primers, resulted in 21 different RAPD patterns for L. lactis subsp. lactis isolates, nine RAPD patterns for L. lactis subsp. cremoris isolates and three RAPD patterns for L. lactis subsp. lactis biovar diacetylactis isolates. Up to 19 different RAPD patterns were found for L. lactis isolates from cheeses made in a particular month.  相似文献   

19.
The genetic diversity of 31 identified strains of Lactococcus lactis ssp. lactis isolated from different dairy and non-dairy sources were investigated at gene level using multilocus sequence analysis (MLSA) and PCR-RFLP based on the differences in four selected partial protein coding gene sequences: araT, encoding aromatic amino acid-specific aminotransferase; dtpT, encoding di/tri peptide transporter; yueF, encoding non-proteolytic protein, peptidase, M16 family; and pdhA, encoding pyruvate dehydrogenase E1 component α-subunit. A set of seven test strains from different isolation sources and one reference strain, L. lactis ssp. lactis NCDC 094, were analyzed by MLSA. The strains showed distinct diversity among themselves and exhibited a greater percent similarity with reference strains L. lactis ssp. lactis CV56 (CP002365.1), IL1403 (AE005176.1), and KF147 (CP001834.1) in comparison with L. lactis ssp. cremoris NZ9000 (CP002094.1), MG1363 (AM406671.1), and SK11 (CP00425.1). The MLSA revealed one distinct genomic lineage within strains exclusively of L. lactis ssp. lactis. This analysis also revealed no source-wise genetic relationship in the test strains analyzed. Further, PCR-RFLP of araT, dtpT, yueF and pdhA also characterized the single genomic lineage exclusively of L. lactis ssp. lactis within a total of 24 test strains.  相似文献   

20.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号