首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Krause K 《Planta》2011,234(4):647-656
The importance of photosynthesis as a mode of energy production has put plastid genomes of plants under a constant purifying selection. This has shaped the characteristic features of plastid genomes across the entire spectrum of photosynthetic plants and has led to a highly uniform and conserved plastid genome with respect to structure, size, gene order, intron and editing site positions and coding capacity. Parasitic species that have dropped photosynthesis as the main energy provider share striking deviations from the plastid genome norm: multiple rearrangements within the circular chromosome, pseudogenization and gene deletions, promoter losses, intron losses as well as the extensive loss of mRNA editing competence have been reported. The collective loss of larger sets of functionally related genes like those for the plastid NADH–dehydrogenase complex and concomitant losses of RNA polymerase genes together with their target promoters point to “domino effects” where an initial loss might have triggered others. An example, which will be discussed in more detail, is the concomitant loss of the intron maturase gene matK and all introns that are supposedly subject to MatK-dependent splicing in two Cuscuta species.  相似文献   

2.
3.
Jamison DS  Yoder JI 《Plant physiology》2001,125(4):1870-1879
We are using the facultative hemiparasite, Triphysaria, as a model for studying host-parasite signaling in the Scrophulariaceae. Parasitic members of this family form subterranean connections, or haustoria, on neighboring host roots to access host water and nutrients. These parasitic organs develop in response to haustorial-inducing factors contained in host root exudates. A well-characterized inducing factor, 2, 6-dimethoxy-p-benzoquinone (DMBQ), can be used to trigger in vitro haustorium formation in the roots of Triphysaria. We have assayed three species, Triphysaria eriantha (Benth.) Chuang and Heckard, Triphysaria pusilla (Benth.) Chuang and Heckard, and Triphysaria versicolor Fischer and C. Meyer, for haustorium development in response to DMBQ. There were significant differences between the species in their ability to recognize and respond to this quinone. Ninety percent of T. versicolor individuals responded, whereas only 40% of T. pusilla and less than 10% of T. eriantha formed haustoria. Within field collections of self-pollinating T. pusilla, differential responsiveness to DMBQ was seen in distinct maternal families. Assaying haustorium development in subsequent generations of self-pollinated T. pusilla showed that DMBQ responsiveness was heritable. Reciprocal crosses between T. eriantha and T. versicolor demonstrated that DMBQ responsiveness was influenced by maternal factors. These results demonstrate heritable, natural variation in the recognition of a haustorial-inducing factor by a parasitic member of the Scrophulariaceae.  相似文献   

4.
The relationship between cell division and plant form has long been a battleground for the debate between those proclaiming and disclaiming an important role for cell division in morphogenetic and developmental processes. Recent evidence suggests that cell division and morphogenesis are intimately interconnected, and whereas overall architecture is determined by patterning genes, the elaboration and execution of developmental programmes require proper control of the cell-division cycle.  相似文献   

5.
RNA interference (RNAi), first described for Caenorhabditis elegans , has emerged as a powerful gene silencing tool for investigating gene function in a range of organisms. Recent studies have described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when preparasitic juvenile nematodes take up double-stranded (ds)RNA that elicits a systemic RNAi response. Important developments over the last year have shown that in planta expression of a dsRNA targeting a nematode gene can successfully induce silencing in parasitizing nematodes. When the targeted gene has an essential function, a resistance effect is observed paving the way for the potential use of RNAi technology to control plant parasitic nematodes.  相似文献   

6.
7.
Mycoplasmas, a group of small parasitic bacteria, adhere to and move across host cell surfaces. The role of motility across host cell surfaces in pathogenesis remains unclear. Here, we used optical microscopy to visualize rheotactic behavior in three phylogenetically distant species of Mycoplasma using a microfluidic chamber that enabled the application of precisely controlled fluid flow. We show that directional movements against fluid flow occur synchronously with the polarized cell orienting itself to be parallel against the direction of flow. Analysis of depolarized cells revealed that morphology itself functions as a sensor to recognize rheological properties that mimic those found on host-cell surfaces. These results demonstrate the vital role of cell morphology and motility in responding to mechanical forces encountered in the native environment.  相似文献   

8.
Two new types of caged gene-inducers, caged 17beta-estradiol and caged dexamethazone, were synthesized. Caged gene-inducers were applied to transgenic Arabidopsis plants carrying a steroid hormone-inducible transactivation system. Light uncaged caged gene-inducers and controlled spatial and temporal expression of transgene in the transgenic plant. Furthermore, caged gene-inducers enabled the control of root development by light.  相似文献   

9.
Chen H  Zhang B  Hicks LM  Xiong L 《PloS one》2011,6(10):e26661
Abiotic stress, such as drought and high salinity, activates a network of signaling cascades that lead to the expression of many stress-responsive genes in plants. The Arabidopsis FIERY1 (FRY1) protein is a negative regulator of stress and abscisic acid (ABA) signaling and exhibits both an inositol polyphosphatase and a 3',5'-bisphosphate nucleotidase activity in vitro. The FRY1 nucleotidase degrades the sulfation byproduct 3'-phosphoadenosine-5'-phosphate (PAP), yet its in vivo functions and particularly its roles in stress gene regulation remain unclear. Here we developed a LC-MS/MS method to quantitatively measure PAP levels in plants and investigated the roles of this nucleotidase activity in stress response and plant development. It was found that PAP level was tightly controlled in plants and did not accumulate to any significant level either under normal conditions or under NaCl, LiCl, cold, or ABA treatments. In contrast, high levels of PAP were detected in multiple mutant alleles of FRY1 but not in mutants of other FRY1 family members, indicating that FRY1 is the major enzyme that hydrolyzes PAP in vivo. By genetically reducing PAP levels in fry1 mutants either through overexpression of a yeast PAP nucleotidase or by generating a triple mutant of fry1 apk1 apk2 that is defective in the biosynthesis of the PAP precursor 3'-phosphoadenosine-5'-phosphosulfate (PAPS), we demonstrated that the developmental defects and superinduction of stress-responsive genes in fry1 mutants correlate with PAP accumulation in planta. We also found that the hypersensitive stress gene regulation in fry1 requires ABH1 but not ABI1, two other negative regulators in ABA signaling pathways. Unlike in yeast, however, FRY1 overexpression in Arabidopsis could not enhance salt tolerance. Taken together, our results demonstrate that PAP is critical for stress gene regulation and plant development, yet the FRY1 nucleotidase that catabolizes PAP may not be an in vivo salt toxicity target in Arabidopsis.  相似文献   

10.
The intersexuality amongst plant parasitic nematodes has been discussed to be an intermediate stage of sex reversal of male into female. We, hereby, suggest four possible reasons for the sex reversal, this being an intermediate stage - a so-called intersex phase: (1) gene mutation, (2) unusual numerical relationship between autosomes and sex chromosomes during fertilization, (3) effect of female sex hormone secreted by adult females alongwith the mating attractant, and (4) presence or absence of andrgenic hormone in males. The possible effect of female sex hormone on the synthesis of macromolecules which might play a role in sex reversal, is discussed in particular.  相似文献   

11.
12.
Neurobiology of plant parasitic nematodes   总被引:1,自引:0,他引:1  
The regulatory constraints imposed on use of chemical control agents in agriculture are rendering crops increasingly vulnerable to plant parasitic nematodes. Thus, it is important that new control strategies which meet requirements for low toxicity to non-target species, vertebrates and the environment are pursued. This would be greatly facilitated by an improved understanding of the physiology and pharmacology of these nematodes, but to date, these microscopic species of the Phylum Nematoda have attracted little attention in this regard. In this review, the current information available for neurotransmitters and neuromodulator in the plant parasitic nematodes is discussed in the context of the more extensive literature for other species in the phylum, most notably Caenorhabditis elegans and Ascaris suum. Areas of commonality and distinctiveness in terms of neurotransmitter profile and function between these species are highlighted with a view to improving understanding of to what extent, and with what level of confidence, this information may be extrapolated to the plant parasitic nematodes.  相似文献   

13.
Markus Nixdorf  Ute Hoecker 《Planta》2010,231(4):825-833
The COP1/SPA complex and DET1 function to suppress photomorphogenesis in dark-grown Arabidopsis seedlings. Additionally, they inhibit flowering under non-inductive short-day conditions. The COP1/SPA complex and DET1, as part of the CDD complex, represent distinct high-molecular-weight complexes in Arabidopsis. Here, we provide genetic evidence that these complexes co-act in regulating plant development. We report the isolation of a spa1 enhancer mutation that represents a novel, very weak allele of det1. This det1 esp1 mutation caused no detectable mutant phenotype in the presence of wild-type SPA1, but showed strongly synergistic genetic interaction with the spa1 mutation in the control of seedling photomorphogenesis, anthocyanin accumulation, plant size as well as flowering time. On the biochemical level, the det1 esp1 spa1 double mutant showed higher HY5 protein levels than either single mutant or the wild type. The genetic interaction of spa1 and det1 mutations was further confirmed in the spa1 det1-1 double mutant which carries a strong allele of det1. Taken together, these results show that SPA1 and DET1 act together to control photomorphogenesis throughout plant development. Hence, this suggests that COP1/SPA complexes and the CDD complex co-act in controlling the protein stability of COP1/SPA target proteins.  相似文献   

14.
15.
John I. Yoder 《Planta》1997,202(4):407-413
Parasitic plants use host molecules to trigger developmental programs essential for parasitism. One such program governs the initiation, development, and function of haustoria, parasite-specific organs responsible for attachment and invasion of host tissues. Haustoria development can be initiated by several different molecules produced by appropriate host species. We are interested in understanding how these signals are interpreted by two related facultative parasites, Triphysaria eriantha (Benth.) Chuang and Heckard, and T. versicolor Fischer and C. Meyer, to distinguish their own roots from those of potential hosts. We used an in vitro bioassay to determine what proportion of different Triphysaria populations formed haustoria in the presence and absence of closely related and unrelated host species. We found that the proportion of plants with haustoria was the same whether the plants were grown in isolation or with a conspecific host. In contrast, a significantly higher proportion of plants made haustoria when the host was a congeneric Triphysaria. Plants with haustoria neither enhanced nor inhibited other plants' propensity to form haustoria. Together these results indicate that qualitative differences exist in haustorium-inducing factors exuded by closely related species. The highest proportion of Triphysaria had haustoria when grown with Arabidopsis thaliana (L.) Heynh. Even in this case, however, some Triphysaria failed to develop haustoria. Interestingly, the percentage of haustoria that had vessel elements was higher when connections were made with Arabidopsis than with another Triphysaria. These results demonstrate that host recognition can be manifested at multiple points in haustorium development. Received: 18 December 1996 / Accepted: 14 February 1997  相似文献   

16.
RNA interference and plant parasitic nematodes   总被引:1,自引:0,他引:1  
RNA interference (RNAi) has recently been demonstrated in plant parasitic nematodes. It is a potentially powerful investigative tool for the genome-wide identification of gene function that should help improve our understanding of plant parasitic nematodes. RNAi should help identify gene and, hence, protein targets for nematode control strategies. Prospects for novel resistance depend on the plant generating an effective form of double-stranded RNA in the absence of an endogenous target gene without detriment to itself. These RNA molecules must then become available to the nematode and be capable of ingestion via its feeding tube. If these requirements can be met, crop resistance could be achieved by a plant delivering a dsRNA that targets a nematode gene and induces a lethal or highly damaging RNAi effect on the parasite.  相似文献   

17.
BACKGROUND AND AIMS: Broomrapes (Orobanche spp.) are holoparasitic weeds that cause devastating losses in many economically important crops. The molecular mechanisms that control early stages of host infection in Orobanche are poorly understood, partly due to the lack of experimentally tractable in vitro systems that allow the efficient application of molecular tools. Here an improved axenic system for the analysis of pre-infection stages in O. ramosa in the absence of the host plant is described. METHODS: An optimized protocol for seed disinfection, based on formaldehyde, was developed. Orobanche ramosa seeds were conditioned in Petri dishes with filter paper, stimulated by addition of the synthetic strigol analogue GR24, and the percentage of germination as well as attachment-organ formation was determined. KEY RESULTS: Treatment of O. ramosa seeds with tobacco-root exudate or with GR24 resulted in highly reproducible germination rates around 70 %. A conditioning period of 8 d was both necessary and sufficient to allow optimal germination in response to GR24. Conditioned seeds that were dehydrated for several months remained fully responsive to GR24 without the need of a new conditioning period. Treatments as short as 5 min with GR24 were sufficient to fully and irreversibly induce the seed germination response. Approximately half of the germinated seeds initiated attachment-organ development. Similar rates of attachment organ induction were also detected in the rare cases of seeds that had germinated spontaneously on water. CONCLUSIONS: The results suggest that the conditioning period produces persistent changes in the seeds required for responsiveness to external stimulants. The rapid action of GR24 suggests that it may act via a receptor-mediated signalling mechanism. While germination in O. ramosa is induced by exogenous stimuli, attachment organ differentiation appears to be triggered by unknown endogenous signals. The new in vitro culture system will have useful applications for the molecular analysis of early stages of parasitic development in Orobanche.  相似文献   

18.
Cell lineage in plant development.   总被引:6,自引:0,他引:6  
Lineage analyses in several plant species demonstrate that meristematic cells proliferate in a predictable manner to form the differentiated tissues of the mature shoot system. These studies also demonstrate, however, that the fates of meristematic cells are not absolutely dependent on their lineage. This variability indicates that interactions between cells must play a role in morphogenesis.  相似文献   

19.
Lineage analyses in several plant species demonstrate that meristematic cells proliferate in a predictable manner to form the differentiated tissues of the mature shoot system. These studies also demonstrate, however, that the fates of meristematic cells are not absolutely dependent on their lineage. This variability indicates that interactions between cells must play a role in morphogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号