首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
《Insect Biochemistry》1990,20(5):467-477
Manduca sexta pharate pupal molting fluid contains more than 10 proteolytic enzymes that differ in relative mobility during electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate and gelatin. The major gelatin digesting enzyme was an endoprotease with an apparent molecular weight of 100 kDa. Gel filtration on a Sephacryl S-300 column resolved another endoprotease of similar size that digests azocoll and [3H]casein. In addition we found an aminopeptidase-like enzyme (MWapp 500 kDa) and at least three carboxypeptidase-like enzymes (MWapp 10–60 kDa). Use of pseudosubstrates and inhibitors suggested the presence of both trypsin-like and chymotrypsin-like enzymes with the former activity approx. 10-fold greater than the latter. However, none of the proteolytic enzymes were substantially inhibited by diisopropylphosphorofluoridate or phenylmethylsulfonyl fluoride which are poteint inhibitors of trypsin and chymotrypsin. No carboxyl or sulfhydryl proteases were detected. The enzymes were most active in the neutral to alkaline pH range, but they were relatively unstable during storage which precluded their purification to homogeneity. Proteolysis of Manduca cuticular protein appears to involve a rather complex and unique mixture of endo- and exo-cleaving proteolytic enzymes.  相似文献   

2.
We present the first procedure for extracting intercellular fluids of potato ( Solanum tuberosum L. cv. Spunta) tubers. Intercellular washing fluids were isolated from healthy and Fusarium ‐infected potato tissue. The electrophoretic pattern using SDS‐PAGE indicated differences between the fluids from the two tissues. A significant extracellular proteolytic activity was accumulated during the infection with Fusarium solani f. sp. eumartii . A major proteolytic band with an apparent molecular mass of 70 kDa and another of approximately 30 kDa were detected after separation of intercellular fluids by casein gel electrophoresis. Proteolytic activity was principally inhibited by diisopropylfluorophosphate, which is indicative of the involvement of serine protease(s). In vitro degradation assay indicated that specific potato proteins from healthy tubers were hydrolyzed by fluid proteases from infected tubers. The biological role of such activity in potato‐ Fusarium interaction is still unknown. Our results suggest that the intercellular serine protease has a fungal origin.  相似文献   

3.
Wrobel R  Jones BL 《Plant physiology》1992,100(3):1508-1516
Barley endoproteolytic enzymes are important to germination because they hydrolyze endosperm storage proteins to provide precursors for new protein synthesis. We recently developed an electrophoretic method utilizing gel-incorporated protein substrates to study the endoproteinases of 4-d-germinated barley (Hordeum vulgare L. cv Morex) grain. This work extends those findings to determine the temporal pattern of the appearance of the endoproteinases during germination, the sensitivities of the proteinases to class-specific proteinase inhibitors, and where, in germinating caryopses, the proteinases reside. Six endoproteinase activity bands (representing a minimum of seven enzymes) were present in 5-d-germinated barley grain extracts subjected to electrophoresis in nondenaturing gels at pH 8.8. The activities of two of the enzyme bands (“neutral” proteinases) increased as the pH was increased from 3.8 to 6.5. The activities of the remaining four (“acidic”) bands diminished abruptly as the pH increased above 4.7. Two proteinase bands hydrolyzed gelatin but not edestin, four of the proteinases hydrolyzed both gelatin and edestin at nearly the same rates, and one enzyme degraded only edestin. One neutral endoproteinase was sensitive to diisopropyl fluorophosphate inhibition, and the other was not inhibited by any of inhibitors tested. Four of acidic enzymes were cysteine proteinases [inhibited by trans-epoxysuccinyl-l-leucylamido(4-guanidino)butane and N-ethylmaleimide]; the other was an aspartic acid endoproteinase (sensitive to pepstatin). Only the aspartic proteinase was detected in either ungerminated or steeped barley grain. During the germination (malting) process, the aspartic endoproteinase activity decreased until the second day of germination and then increased until germination day 5. The first endoproteinase(s) induced during germination was a neutral enzyme that showed activity on the 1st day of the germination phase after steeping. Most of the endoproteinases became active on the 2nd or 3rd germination day, but one cysteine proteinase was not detected until the 5th day. Acid cysteine proteinases were present in the aleurone, scutellum, and endosperm tissues but not in shoots and roots. The aleurone layer and endosperm contained almost exclusively band B1 neutral proteinases, whereas the scutellum, shoots, and roots contained both B1 and B2 bands. This work shows that germinating barley contains a complex set of proteinases whose expression is temporally and spatially controlled. But, at the same time, it also shows that this electrophoretic method for separating and studying individual enzymes of this complex will allow us to more readily characterize and purify them.  相似文献   

4.
Gelatinolytic activities in fish tissues with properties like matrix metalloproteinases (MMPs) have been paid little attention. However, they have been proposed to participate in post mortem degradation during storage and the disintegration of pericellular connective tissue during spawning. In this paper the distribution of gelatinolytic activities in liver, heart, muscle, gill, and male and female gonad of Atlantic cod (Gadus morhua) was studied by using gelatin SDS-PAGE, proteinase inhibitors, gelatin and lentil lectin Sepharose affinity chromatography. The amount of gelatin degrading enzymes varied from tissue to tissue. Most of the gelatin binding enzymes were found to be matrix metalloproteinases by adding galardin, a broad range MMP inhibitor, to the incubation buffer. A 72 kDa form of cod gelatin degrading enzyme had properties similar to human proMMP-2, as it could be activated by p-aminophenylmercuric acetate and trypsin. Like the human MMP-2 it did not bind to lentil lectin. An 83 kDa cod gelatin degrading enzyme had properties similar to the 92 kDa progelatinase B (proMMP-9). These properties were also similar to that of the 72 kDa form, except that the 83 kDa cod gelatinase was bound to lentil lectin, showing that it is a glycoprotein like MMP-9.  相似文献   

5.
Flury T  Wagner E  Kreuz K 《Plant physiology》1996,112(3):1185-1190
Glutathione S-transferases (GSTs) with additional activities as fatty acid hydroperoxidases were investigated in soybean (Glycine max L.) hypocotyls. Aside from the GSTs present in total soluble tissue extracts, enzyme activities and distinct immunoreactive GST polypeptides were also detected in the intercellular washing fluid. Whereas the intracellular isoenzymes were both constitutive and inducible, apoplastic GST and glutathione peroxidase was detectable only in tissues treated with the known GST inducer 2,3,5-triiodobenzoic acid. Monensin inhibited the induced accumulation of apoplastic GST but did not affect the intracellular isoforms. The discovery of apoplastic inducible GST will be discussed in light of the putative function of these enzymes in plants.  相似文献   

6.
Several apoplastic enzymes have been implicated in the control of elongation growth of plant cells. Among them, peroxidases contribute to both loosening and stiffening of the cell wall. They appear to be regulated by various mechanisms, including the action of extracellular inhibitors. To obtain evidence of the role of the enzyme–inhibitor interaction during leaf development, the intercellular washing fluids from Helianthus annuus leaves of different ages were isolated using standard methods of vacuum infiltration and centrifugation. Peroxidase activities, assessed using tetramethylbenzidine as substrate, increased during leaf development, reaching a maximum value after the leaves were fully expanded. An inhibitor, chemically characterised as ascorbate, co‐localised with the enzyme in the apoplast. Moreover, there was a strong negative correlation between the action of peroxidase and the micromolar concentration of ascorbate in the apoplastic fluid. The results show that in growing leaves, the in planta ascorbate concentration is able to restrain peroxidase enzyme activity. Then, at the time of growth cessation, the loss of extracellular ascorbate relieves the inhibition on this enzyme that contributes to wall fixation.  相似文献   

7.
An intercellular washing solution containing about 1% of the soluble protein, 0.3% or less of the glucose-6-phosphate dehydrogenase activity, but up to 20% of the peroxidase and β-d-glucosidase activity of barley (Hordeum vulgare L.) or oat (Avena sativa L.) primary leaves was obtained by vacuum infiltrating peeled leaves with pH 6.9 buffered 200 millimolar NaCl. After this wash, segments were homogenized in buffer, centrifuged, and the supernatant was assayed for soluble cytoplasmic enzymes. The pellet was washed and resuspended in 1 molar NaCl to solubilize enzymes strongly ionically bound to the cell wall. The final pellet was assayed for enzyme activity covalently bound in the cell wall. Apoplastic (intercellular washing solution, ionically bound, and covalently bound) fractions contained up to 76% of the β-d-glucosidase activity, 36% of the peroxidase activity, 11% of the nonspecific arylesterase activity, 4% of the malate dehydrogenase activity, but less than 2% of the glucose-6-phosphate dehydrogenase activity of peeled leaf segments. The partitioning and salt-solubility of the enzymes between the apoplast and symplast differed considerably between these two species. Intercellular washing fluid prepared by centrifuging unpeeled leaves had higher activity for glucose-6-phosphate dehydrogenase, less soluble protein, and less peroxidase activity per leaf than intercellular washing solution obtained by our peeling-infiltration-washing technique. The results are discussed in relation to the roles of these enzymes in phenolic metabolism in the cell wall.  相似文献   

8.
AIMS: To determine characteristics of the extracellular enzyme activity of Kytococcus sedentarius on human callus. METHODS AND RESULTS: A concentrate of a continuous culture supernatant fluid of K. sedentarius, which had callus-degrading activity, was subjected to a series of chromatographic purification procedures. The enzyme activity was found to be attributable to two proteases. These were capable of degrading both native callus and extracted keratin polypeptides and were purified to homogeneity, as shown by SDS-PAGE with silver staining. The enzymes P1 and P2 were 30 kDa and 50 kDa in size with isoelectric points of 4.6 and 2.7, respectively. The optimum conditions for callus-degrading activity were 40 degrees C, pH 7.1 for P1 and 50 degrees C, pH 7.5 for P2. P2 displayed increased activity in the presence of 800 mmol l(-1) NaCl and both enzymes were inhibited by PMSF (1 mmol(-1) Phenylmethylsulphoryl fluoride) and 1 mmol l(-1) EDTA. The main enzyme cleavage sites were Lys-Trp, Val-Lys, Gly-Asp and Asp-Arg, as determined after incubation of P1 and P2 with the beta-chain of insulin. CONCLUSIONS: K. sedentarius produces two extracellular enzymes that independently degrade natural, insoluble human callus. Both enzymes are serine proteases and have cleavage preference sites that are present in a range of human keratins. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification, in K. sedentarius cultures, of two enzymes which can degrade human callus strengthens the hypothesis that this organism is responsible for the pitting in human epidermis observed in pitted keratolysis. These enzymes may be of commercial use in the biodegradation of a range of keratin polymers, biological washing powders and in the treatment of unwanted callus on human skin.  相似文献   

9.
Membrane protein binding to the origin region of Bacillus subtilis.   总被引:3,自引:1,他引:2       下载免费PDF全文
Binding of membrane proteins extracted from Bacillus subtilis to an 11.6-kilobase region containing the origin of replication was examined by Western blotting (protein blotting) procedures. Two adjacent origin probes in the double-stranded form (spanning a length of 4 kilobases) were found to bind very strongly to a 63-kilodalton (kDa) protein in that they resisted dissociation after a high-concentration salt wash. This region encompasses both a site implicated in initiation in vivo and a gene coding for a DNA gyrase subunit (gyrA). In contrast, flanking origin and nonorigin double-stranded probes were dissociated after washing with a high salt concentration. Another protein of 67 kDa bound less intensely to the putative initiation site but not to the gyrA region. All of the origin and nonorigin probes in the double- or single-stranded form were found to bind nonspecifically to a subset of 10 to 12 proteins of 50 to 60 separated by gel electrophoresis after a low-concentration salt wash. They ranged in size from 14 to over 100 kDa (including 63 kDa). However, in contrast to the double-stranded forms, most of the single-stranded probes resisted dissociation from the protein subset after a high-concentration salt wash.  相似文献   

10.
Abstract Streptococcus mutans was shown to produce two extracellular proteases capable of degrading both gelatin and collagen-like substrates. These enzymes have molecular masses of 52 and 50 kDa when analysed by SDS-PAGE. Both enzymes were inhibited by EDTA, but not by a range of other inhibitors with different specificities, indicating that they are metalloproteases. The activity of EDTA-inactivated enzymes could be restored by the addition of manganese and zinc. The identical inhibition and restoration profiles of the two enzymes suggest that one of the proteases may be a degradation product of the other.  相似文献   

11.
Lai JY  Lu PL  Chen KH  Tabata Y  Hsiue GH 《Biomacromolecules》2006,7(6):1836-1844
Cell transplantation strategies usually involve the use of supporting carrier materials because of the soft and fragile nature of these grafts. In this work, a cell-adhesive gelatin hydrogel carrier was fabricated to deliver cultivated human corneal endothelial cell (HCEC) sheets, which were harvested from thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm)-grafted culture surfaces. The carrier disks, consisting of gelatins with a different isoelectric point (IEP = 5.0 and 9.0) and a molecular weight (MW) ranging from 3 to 100 kDa, were subjected to 16.6 kGy gamma irradiation for sterilization. The effect of IEP and MW of the raw gelatins (i.e., before irradiation) on the functionality of sterilized disks was studied by determinations of mechanical property, water content, dissolution degree, and cytocompatibility. Irrespective of the IEP of raw gelatin, hydrogel disks prepared with high MW (100 kDa) exhibited a greater tensile strength, lower water content, and slower dissolution rate than those made of low MW gelatin (8 and 3 kDa). From the investigation of cellular responses to the disks, the negatively charged gelatin (IEP = 5.0) groups were more cytocompatible when compared with their positively charged counterparts (IEP = 9.0) at the same MW (100 kDa). Additionally, in the negatively charged gelatin groups, only a slight increase in pro-inflammatory cytokine expression was observed with increasing MW of gelatin from 3 to 100 kDa. It is concluded that the gamma-sterilized hydrogel disks made from raw gelatins (IEP = 5.0, MW = 100 kDa) with appropriate dissolution degree and acceptable cytocompatibility are capable of providing stable mechanical support, making these carriers promising candidates for intraocular delivery of cultivated HCEC sheets.  相似文献   

12.
The intercellular washing fluid (IWF) of Malus domestica cv. Holsteiner Cox before and after application of the non-pathogenic bacterium Pseudomonas fluorescens Bk3 to the leaves was investigated in a comparative manner. SDS-PAGE in combination with ESI Q-ToF mass spectrometry, and homology search in relevant data bases revealed the highly up-regulated expression of several pathogenesis-related plant proteins in the apoplast of the leaves treated with P. fluorescens. These proteins were beta3-1,3-glucanase, chitinase, thaumatin-like protein, ribonuclease-like protein, and a hevein-like protein. Moreover, a 9 kDa non-specific lipid transfer protein was significantly reduced after the application of P. fluorescens. The possible relevance of a pre-treatment of apple cultivars with the non-pathogenic bacterium P. fluorescens Bk3, as an alternative method to the treatment with fungicides, for increasing the resistance of susceptible apple cultivars against an infection with the fungus Venturia inaequalis is discussed.  相似文献   

13.
Peptidases in the extracellular space might affect the integrity of recombinant proteins expressed in, and secreted from, plant cells. To identify extracellular peptidases, we recovered the leaf intercellular fluid from Nicotiana tabacum plants by an infiltration-centrifugation method. The activity of various peptidases was detected by an in vitro assay in the presence of specific inhibitors, using BSA and human serum gamma-globulin as substrates. Peptidases were detected by 1- and 2-D zymography in a polyacrylamide gel containing gelatin as substrate. Proteolytic activity was observed over a wide range of molecular masses equal to, or higher than, 45 kDa. To identify the peptidases, the extracellular proteins were digested with trypsin and analyzed by LC and MS. Seventeen peptides showing identity or similarity to predicted plant aspartic, cysteine, and serine peptidases have been identified. The extracellular localization of a cysteine peptidase aleurain homolog was also shown.  相似文献   

14.
Chitinases (EC 3.2.1.14) and β -1.3 glucanases (EC 3.2.1.39) have been known to play a vital role in the defense of plants against fungal pathogens. The pattern of induction of these two enzymes subsequent to infection by powdery mildew was studied in 10 pairs of near-isogenic lines of barley ( Hordeum vulgare L.) which possess powdery mildew resistance genes. These isogenic lines have been grotiped according to their reaction to the fungus. The induction patterns varied between the resistant and the susceptible cultivars within each group and between different groups. More tsozymcs were induced in susceptible varieties of highly resistant groups and the overall levels and the number of isozymes of chitinases and β -1.3 glucanases were lower in groups with low resistance. The effect of powdery mildew infection and mechanical wounding on the cellular localization of chitinases and β -1.3 glucanases in barley leaves has also been studied. The 31 kDa leaf chitinase, L-CH2, and trace amounts of a 25 kDa chitinase. L-CH3. were present in healthy leaves. Wounding increased the levels of L-CH3 within I ft h. Powdery mildew infection increased the levels of L-CH3 both in intercellular fluid and in intracellular extract of leaves. A /3-I.3 glucanase. GH, also increased after infection and wounding. In infected barley leaves, GL-1 was present both in intercellular space and intracellular extract. It is concluded that powdery mildew resistance genes exhibit qualitative and quantitative differences in the expression of chitinases and β -1.3 glucanases. Further, chitinases and β -1.3 glucanases appear to be a response to active infection rather than the factors responsible for disease resistance.  相似文献   

15.
Streptomyces strain 3B constitutively secreted collagenolytic enzymes during the post-exponential growth phase. Purification is described here leading to two collagenases (I and II) with specific activity of 3350 and 3600 U/mg, respectively, the highest activity obtained as yet for any streptomycete collagenase. Analysis of the purified enzymes by the method of zymography revealed that both I and II were homogeneous, with molar mass 116 and 97 kDa, respectively. Both collagenases were identical in their pH (7.5) and temperature optimum (37 degrees C). The inhibition profile of the enzymes by EDTA and 1,10-phenanthroline confirmed these enzymes to be metalloproteinases. By testing the activity with insoluble collagen, acid soluble collagen, gelatin, casein, elastin and Pz-PLGPR it was established that I and II are very specific for insoluble collagen and gelatin, showing a high activity toward acid soluble collagen and Pz-PLGPR. However, collagenases I and II failed to hydrolyze casein and elastin; they belong to true collagenases and resemble the clostridial enzymes.  相似文献   

16.
Proteolytic activity was demonstrated in the follicle wall surrounding oocytes of brook trout (Salvelinus fontinalis) by an assay system that incorporated protein substrates into sodium dodecyl sulfate-polyacrylamide gel electrophoresis (substrate-SDS-PAGE). At least six proteolytic enzymes (78, 70, 67, 59, 22 and 20 kDa) were present when follicle wall extracts were electrophoresed and incubated in gels containing gelatin. Of these six enzymes, only two enzymes (20 and 22 kDa) were present when follicle wall extracts were resolved and incubated in gels containing casein. The activities of the 78 and 70 kDa enzymes were completely inhibited with metallo- and collagenolytic protease inhibitors and partially inhibited with serine protease inhibitors. The activities of the 67 and 59 kDa enzymes were completely blocked with metallo- and collagenolytic protease inhibitors. The activities of the 22 and 20 kDa enzymes were only slightly decreased with a serine protease inhibitor.  相似文献   

17.
Barley ( Hordeum vulgare L.) chitinases (EC 3.2.1.14) were found to be distributed and induced in highly tissue specific patterns. Out of 6 chitinases investigated 3 were present in leaves and only a class II chitinase (molecular mass 24 846 ± 5 Da, pI≥9.8) was markedly induced in leaves heavily infected with powdery mildew ( Erysiphe graminis f. sp. hordei ). The class II chitinase and a novel class III chitinase (molecular mass 30 kDa, pI≥9.8) were found in intercellular washing fluid of leaves, suggesting extracellular deposition. Neither of these two proteins were induced after infiltration of sodium salicylate (2 m M , pH 6.5) or nickel chloride (2 m M ). The class III chitinase showed exochitinase activity in addition to endochitinase activity. No grain specific chitinases were found in leaves after any of the stresses applied. In contrast, 3 grain specific chitinases and one of the leaf chitinases were found in in vitro cultures.  相似文献   

18.
The testicular and epididymal fluids of ram, boar, and stallion were analyzed by means of one-dimensional and two-dimensional gelatin gel zymography. Five main gelatinolytic bands were revealed in the ram and at least seven were observed in the boar and stallion. These proteolytic bands showed regionalized distribution throughout the organs. The two main proteolytic activities at around 54-66 kDa retrieved in all three species were inhibited by EDTA and phenanthroline, indicating that they were metallo-dependent enzymes. The activity of some of the low-molecular-weight gelatinases was also decreased by EDTA, whereas others were inhibited by serine protease inhibitors. One of the main proteases at 60-62 kDa from the caput fluid of the stallion and the ram was N-terminal sequenced; in both cases, high sequence homology was found with the N-terminal of the matrix-metalloproteinase-2 pro-form (pro-MMP-2). Antibodies against MMP-2, MMP-3, and MMP-9 gelatinases confirmed the regional distribution in the fluids of pre -, pro-, active, or degraded forms of these metalloproteases in all three species. We also observed the presence of acrosin in epididymal fluids, which was probably released by dead spermatozoa, but this enzyme did not explain all the serine protease activity. Moreover, the majority of this enzyme is bound to the protease inhibitor alpha(2)-macroglobulin, which is present in the fluids of all three species. TIMP-2, a potent inhibitor of MMPs, was present in the fluid of the caput regions in the ram and boar, and in the caput and caudal fluids of the stallion. This study demonstrated that similar types of proteases and inhibitors are regionally distributed in the epididymal fluids of three domestic species, suggesting an identical role in the sperm maturation process, the plasticity of this organ, or both.  相似文献   

19.
Early interactions between invading penetration hyphae of the pathogenic fungus Magnaporthe oryzae and rice cells occur at the apoplast, the free diffusional space outside the plasma membrane of leaves. After initial colonization, intercellular hyphae are again in intimate contact with the rice apoplast. While several studies have looked at proteomics in rice–Magnaporthe interactions, none have focused on apoplast localized proteins. We adjusted a protocol for intercellular washing fluids (IWF) to rice leaves infected with Magnaporthe oryzae for proteomic analysis. In our IWF extract, we identified several proteins associated with compatible or incompatible pathogen interactions. Three DUF26 domain proteins were identified as changing in abundance 12 h after inoculation, confirming DUF26 domain-containing proteins are among early, pathogen stress-responsive proteins induced by infection with Magnaporthe oryzae. A Magnaporthe cyclophilin, previously identified as a virulence factor was also identified in the intercellular washing fluid.  相似文献   

20.
The distribution and subcellular localization of the two major proteases present in oat (Avena sativa L. cv Victory) leaves was investigated. Both the acidic protease, active at pH 4.5, and the neutral protease, active at pH 7.5, are soluble enzymes; a few percent of the enzyme activity was ionically bound or loosely associated with organellar structures sedimenting at 1000g. On the average, 16% of the acidic protease could be washed out of the intercellular space of the leaf. Since isolated protoplasts contained correspondingly lower activities as compared to crude leaf extracts, part of the acidic activity is associated with cell walls. No neutral protease activity was recovered in intercellular washing fluid. Of the activities present in protoplasts, the acidic protease was localized in the vacuole, whereas the neutral protease was not. The localization of the acidic protease in vacuoles did not change during leaf development up to an advanced stage of senescence, when more than 50% of the leaf protein had been degraded. These observations indicate that protein degradation during leaf senescence is not due to a redistribution of acidic protease activity from the vacuole to the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号