首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Liu G  Ye X  Zhu Y  Li Y  Sun J  Cui L  Cao Y 《Cryobiology》2011,63(2):125-128
The osteogenic capacity of human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) has been demonstrated both in vitro and in vivo. Therefore, cell labeling and storage are becoming necessary for researching the potential therapeutic use of UCB-MSCs for bone tissue engineering. The aim of this study was to determine the effect of cryopreservation on the osteogenic differentiation of green fluorescent protein (GFP)-marked UCB-MSCs in vitro. MSCs were isolated from full-term human UCB, expanded, transfected with the GFP gene, and then cryopreserved in liquid nitrogen for 4 weeks. After thawing, cell surface antigen markers and osteogenic potential were analyzed, and the luminescence of these cells was observed by fluorescence microscopy. The results demonstrate that cryopreservation has no effect on the cell phenotype, GFP expression or osteogenic differentiation of UCB-MSCs, showing that cryopreserved GFP-labeled UCB-MSCs might be applied for bone tissue engineering.  相似文献   

4.
5.
Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells). Recent in vitro studies revealed that, in the absence of any kind of differentiation stimuli, undifferentiated MSCs express neural differentiation markers, but the literature data do not all concur. Considering their promising therapeutic potential for neurodegenerative diseases, it is very important to expand our knowledge about this particular biological property of MSCs. In this study, we confirmed the spontaneous expression of neural markers (neuronal, glial and progenitor markers) by undifferentiated human MSCs (hMSCs) and in particular, we demonstrated that the neuronal markers βIII-tubulin and NeuN are expressed by a very high percentage of hMSCs, regardless of the number of culture passages and the culture conditions. Moreover, the neuronal markers βIII-tubulin and NeuN are still expressed by hMSCs after in vitro osteogenic and adipogenic differentiation. On the other hand, chondrogenically differentiated hMSCs are negative for these markers. Our findings suggest that the expression of neuronal markers could be common to a wide range of cellular types and not exclusive for neuronal lineages. Therefore, the expression of neuronal markers alone is not sufficient to demonstrate the differentiation of MSCs towards the neuronal phenotype. Functional properties analysis is also required.  相似文献   

6.
7.
Cho H  Seo YK  Jeon S  Yoon HH  Choi YK  Park JK 《Life sciences》2012,90(15-16):591-599
AimsAdult stem cells, such as umbilical cord-derived mesenchymal stem cells (UC-MSCs), have the potential to differentiate into various types of cells, including neurons. Research has shown that mechanical stimulation induces a response in MSCs, specifically, low and high intensity sub-sonic vibration (SSV) has been shown to facilitate wound healing. In this study, the effects of SSV were examined by assessing the proliferation and differentiation properties of MSCs.Main methodshUC-MSCs were isolated from Wharton's jelly, including the smooth muscle layer of the umbilical cord. During subculture, the cells were passaged every 5–6 days using nonhematopoietic stem cell media. To measure the effect of sonic vibration, SSV was applied to these cells continuously for 5 days.Key findingsIn this study, the morphology of hUC-MSCs was altered to resemble neurons by SSV. Further, the mRNA and protein levels of neuron-specific markers, including MAP2, NF-L, and NeuroD1, increased. In addition, other neural cell markers, such as GFAP and O4, were increased. These results suggest that hUC-MSCs differentiated into neural cells upon SSV nonselectively. In a mechanism study, the ERK level increased in a time-dependent manner upon SSV for 12 h.SignificanceThe results of this study suggest that SSV caused hUC-MSCs to differentiate into neural cells via ERK activation.  相似文献   

8.
Isolation of mesenchymal stem cells (MSCs) from umbilical cord blood (UCB) from full-term deliveries is a laborious, time-consuming process that results in a low yield of cells. In this study we identified parameters that can be helpful for a successful isolation of UCB-MSCs. According to our findings, chances for a well succeeded isolation of these cells are higher when MSCs were isolated from UCB collected from normal full-term pregnancies that did not last over 37 weeks. Besides the duration of pregnancy, blood volume and storage period of the UCB should also be considered for a successful isolation of these cells. Here, we found that the ideal blood volume collected should be above 80 mL and the period of storage should not exceed 6 h. We characterized UCB-MSCs by morphologic, immunophenotypic, protein/gene expression and by adipogenic differentiation potential. Isolated UCB-MSCs showed fibroblast-like morphology and the capacity of differentiating into adipocyte-like cells. Looking for markers of the undifferentiated status of UCB-MSCs, we analyzed the UCB-MSCs’ protein expression profile along different time periods of the differentiation process into adipocyte-like cells. Our results showed that there is a decrease in the expression of the markers CD73, CD90, and CD105 that correlates to the degree of differentiation of UCB-MSCs We suggest that CD90 can be used as a mark to follow the differentiation commitment degree of MSCs. Microarray results showed an up-regulation of genes related to the adipogenesis process and to redox metabolism in the adipocyte-like differentiated MSCs. Our study provides information on a group of parameters that may help with successful isolation and consequently with characterization of the differentiated/undifferentiated status of UCB-MSCs, which will be useful to monitor the differentiation commitment of UCB-MSC and further facilitate the application of those cells in stem-cell therapy.  相似文献   

9.
In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases.  相似文献   

10.
Arsenic trioxide (ATO) as an anti-tumor drug could induce differentiation and apoptosis in tumor cells. Mesenchymal stem cells (MSCs) play important roles in the hematogenesis of bone marrow. Many reports have shown that the disorder of MSC adipogenic and osteogenic differentiation occurs in some diseases. However, reports about the effects of ATO on MSCs are limited. In this study, we found that 1 μM ATO promoted MSC senescence mainly through p21, although it had no effect on apoptosis at this dose. Furthermore, ATO promoted adipogenic differentiation, but inhibited osteogenic differentiation in MSCs. Our study also showed that CCAAT/enhancer-binding protein alpha C/EBPα and peroxisome proliferator-activated receptor gamma PPARγ might be involved in the regulation of adipogenic and osteogenic differentiation induced by ATO. Our results indicated that ATO may exert an anti-tumor effect by influencing bone marrow micro-environment. Moreover, it may regulate the adipogenic and osteogenic differentiation of MSCs.  相似文献   

11.
Type II collagen is known to modulate chondrogenesis of mesenchymal stem cells (MSCs). In this study, MSCs from human bone marrow aspirates were used to study the modulating effects of type II collagen on MSC differentiation during the early stages of osteogenesis and adipogenesis. With osteogenic induction, MSCs cultured on the type II collagen-coated surface showed an enhanced calcium deposition level with increasing mRNA expressions of RUNX2, osteocalcin, and alkaline phosphatase. A synthetic integrin binding peptide, which specifically interacts with the I-domain of α(1)β(1)/α(2)β(1) integrins significantly blocks the mineralization-enhancing effect of type II collagen. MSCs attached on the type II collagen-coated plates exhibited expanded cell morphology with increasing spreading area, and the pretreatment of cells with integrin α(1)β(1) or α(2)β(1)-blocking antibody reduced the effect. The phosphorylation levels of FAK, ERK, and JNK significantly increased in the MSCs that attached on the type II collagen-coated plates. On the contrary, the mineralization-enhancing effect of type II collagen was diminished by JNK and MEK inhibitors. Furthermore, type II collagen blocked the adipogenic differentiation of MSCs, and this effect is rescued by JNK and MEK inhibitors. In conclusion, type II collagen facilitates osteogenesis and suppresses adipogenesis during early stage MSC differentiation. Such effects are integrin binding-mediated and conducted through FAK-JNK and/or FAK-ERK signaling cascades. These results inspire a novel strategy encompassing type II collagen in bone tissue engineering.  相似文献   

12.
13.
14.
Platelet-rich plasma (PRP) is an emerging therapeutic application because PRP contains various growth factors that have beneficial effects on tissue regeneration and engineering. Mesenchymal stem cells and PRP derived from peripheral blood have been well studied. In this study, we investigated the effects of PRP derived from human umbilical cord blood (UCB-PRP) on proliferation, alkaline phosphatase (ALP) activity, and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs), dental pulp stem cells (DPSCs), and periodontal ligament stem cells (PDLSCs). Three types of dental stem cells were primarily isolated and characterized by flow cytometric analysis. Dental stem cells were exposed to various concentrations of UCB-PRP, which resulted in the proliferation of dental stem cells. Treatment with 2% UCB-PRP resulted in the highest level of proliferation. The ALP activity of DPSCs and PDLSCs increased following treatment with UCB-PRP in a dose-dependent manner up to a concentration of 2%. ALP activity decreased with higher concentration of UCB-PRP. The effects of UCB-PRP on calcium deposition were similar to those on proliferation and ALP activity. Treatment with 2% UCB-PRP resulted in the highest calcium depositions in DPSCs and PDLSCs; however, treatment with 1% UCB-PRP resulted in the highest calcium deposition in SHEDs. The concentrations of platelet-derived growth factor-AB and transforming growth factor-β1 in UCB-PRP were investigated and found to be comparable to the amounts in peripheral blood. Overall, UCB-PRP had beneficial effects on the proliferation and osteogenic differentiation of dental stem cells. Determination of the optimal concentration of UCB-PRP requires further investigation for clinical applications.  相似文献   

15.
Multipotent mesenchymal stem cells (MSCs) derived from human umbilical cord blood (hUCB) represent promising candidates for the development of future cellular therapy strategies. MSCs have been found to be able to differentiate into various tissues. One of the primary limitations in our understanding of the biology of human MSCs is the absence of prospective markers required for the monitoring of lineage-specific differentiation. hUCB-derived MSCs have been found to have significantly greater osteogenic potential. In this study, we focused on proteins that were differentially expressed during osteogenic differentiation of hUCB-MSCs. And we analyzed the protein expression inherent to osteogenic differentiation by two-dimensional gel electrophoresis, ESI-Q-TOF, and Western blotting. Eleven differentially expressed spots were observed between the two groups (before and after differentiation) on the 2-DE map. These might also be proved as useful cytosolic biomarker proteins for osteogenesis, and might be employed in quality control of osteoblasts in cell-therapy applications.  相似文献   

16.
Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.  相似文献   

17.

Background  

There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood.  相似文献   

18.
19.

Background

Adipocyte differentiation of human mesenchymal stem cells (hMSCs) is dependent on mitochondrial metabolism and reactive oxygen species (ROS) to initiate adipocyte differentiation. Although anethole has been known as an anti-oxidant and lipid peroxidation inhibitor, there is little investigated about its role in adipogenic differentiation.

Methods

The effects on cytotoxicity and proliferation of anethole in hMSCs were measured by the MTT assay. The anti-adipogenic effect of anethole on hMSCs was analyzed by Oil Red O staining and western blot analysis. The anti-oxidant activity of anethole on hMSC was assessed by flowcytometry and fluorescence staining using 2',7' –dichlorofluorescin diacetate (DCFDA). The western blotting was used to detect of phospho-Akt, phospho-mTOR, phospho-p70S6K, PPARγ, and phsopho-AMP-activated kinase (AMPK).

Results

Anethole suppressed the adipogenic differentiation of hMSCs through down-regulation of Akt-mTOR-p70S6K-PPARγ and up-regulation of AMPK. Anethole affected oxidative conditions through ROS generation. Anethole also rescued AMPK activity and reduced activation of mTOR-p70S6K-PPARγ under oxidative conditions in presence of exogenous hydrogen peroxide.

Conclusion

ROS and mTOR regulation is a crucial factor in adipogenic differentiation, anethole has an important role in regulating activities of mTOR/PPARγ and ROS control in adipogenic differentiation of hMSCs.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号