首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the role of presynaptic ryanodine receptors in the regulation of the kinetics of neurotransmitter quantum secretion caused by a nerve impulse in the experiments on the mouse neuromuscular junction, temporal parameters of phase synchronous and asynchronous delayed release of acetylcholine under the conditions of ryanodine receptors block and rhythmic stimulation were examined. The analysis of histograms of synaptic delays of the uni-quantal end-plate currents registered within 50 ms after the onset of the presynaptic action potential showed that ryanodine receptor blockers ryanodine, TMB-8 and dantrolene reduced the intensity of both phase synchronous and delayed asynchronous release of the mediator. The proportion of quanta released synchronously increased at the expense of the reduction of quantum numbers forming the delayed asynchronous release, i.e., there was a redistribution of quanta between synchronous and asynchronous phases of secretion. A block of ryanodine receptors also reduced the fluorescence intensity of the specific fluorescent calcium-sensitive dye Fluo-3 AM, which indicates a decrease in the intracellular calcium ion concentration. Thus, the presynaptic ryanodine receptors control the intracellular content of calcium ions under repetitive stimulation of the nerve endings and contribute to the modulation of the time parameters of the evoked release of the neurotransmitter quanta by increasing the intensity of the delayed asynchronous release of neurotransmitters.  相似文献   

2.
It is widely accepted that the leading presynaptic mechanisms underlying the synaptic plasticity involve changes of the number of neurotransmitter quanta released by one nerve pulse (the quantal content of postsynaptic response) and of the size of a single quantum. In addition, the existence of one more effective though previously ignored mechanism of modulation of synaptic plasticity was suggested related to the change in the time course (kinetics) of secretion of single neurotransmitter quanta forming the multiquantal response. This article reviews current data (including the authors' own results) on the kinetics of evoked neurotransmitter quanta secretion from motor nerve endings in peripheral synapses, mechanisms of their modulation and methods of quantitative analysis.  相似文献   

3.
To elucidate the mechanisms of calcium regulation of the kinetics of the evoked neurotransmitter quantal release, we have investigated the temporal parameters of acetylcholine secretion in the mouse neuro-muscular junction at varying extracellular calcium concentration, in the presence of calcium channel blockers or intracellular calcium buffers. Acetylcholine secretion was induced by the motor nerve stimulation at a low frequency, which did not produce facilitation of the neurotransmitter release. The analysis of histograms of synaptic delays of uniquantal endplate currents recorded during 50 ms after the presynaptic action potential revealed three components of the secretion process: early and late periods of synchronous release and a delayed asynchronous release. At reduced extracellular calcium level, the relative number of quanta released during the asynchronous phase of secretion increased, while the rate of quantal release during the early synchronous period decreased. The findings support the hypothesis of participation of low- and high-affinity calcium sensors with different calcium binding kinetics in regulation of, respectively, synchronous and asynchronous release of neurotransmitter quanta.  相似文献   

4.
Calcium (Ca2+) is a second messenger regulating a wide variety of intracellular processes. Using GABA-and glycinergic synapses as examples, this review analyzes two functions of this unique ion: postsynaptic Ca2+-dependent modulation of receptor-operated channels and Ca2+-induced retrograde regulation of neurotransmitter release from the presynaptic terminals. Phosphorylation, rapid Ca2+-induced modulation via intermediate Ca2+-binding proteins, and changes in the number of functional receptors represent the main pathways of short-and long-term plasticity of postsynaptic receptor-operated channel machinery. Retrograde signaling is an example of synaptic modulation triggered by stimulation of postsynaptic cells and mediated via regulation of presynaptic neurotransmitter release. This mechanism provides postsynaptic neurons with efficient tools to control the presynaptic afferents in an activity-dependent mode. Elevation of intracellular Ca2+ in a postsynaptic neuron triggers the synthesis of endocannabinoids (derivatives of arachidonic acid). Their retrograde diffusion through the synaptic cleft and consequent activation of presynaptic G-protein coupled to CB1 receptors inhibits the release of neurotransmitter. These mechanisms of double modulation, which include control over the function of postsynaptic ion channels and retrograde suppression of the release machinery, play an important role in Ca2+-dependent control of the main excitatory and inhibitory synaptic pathways in the mammalian nervous system.  相似文献   

5.
Postsynaptic Ca2+ signal influences synaptic transmission through multiple mechanisms. Some of them involve retrograde messengers that are released from postsynaptic neurons in a Ca2+-dependent manner and modulate transmitter release through activation of presynaptic receptors. Recent studies have revealed essential roles of endocannabinoids in retrograde modulation of synaptic transmission. Endocannabinoid release is induced by either postsynaptic Ca2+ elevation alone or activation of postsynaptic Gq/11-coupled receptors with or without Ca2+ elevation. The former pathway is independent of phospholipase Cbeta (PLCbeta) and requires a large Ca2+ elevation to a micromolar range. The latter pathway requires PLCbeta and is facilitated by a moderate Ca2+ elevation to a submicromolar range. This facilitation is caused by Ca2+-dependency of receptor-driven PLCbeta activation. The released endocannabinoids then activate presynaptic cannabinoid receptor type 1 (CB1), and suppress transmitter release from presynaptic terminals. Both CB1 receptors and Gq/11-coupled receptors are widely distributed in the brain. Thus, the endocannabinoid-mediated retrograde modulation may be an important and widespread mechanism in the brain, by which postsynaptic events including Gq/11-coupled receptor activation and Ca2+ elevation can retrogradely influence presynaptic function.  相似文献   

6.
One of the pathways implicated in a fine-tuning control of neurosecretory process is the activation of presynaptic receptors. The present study was focused on the role of presynaptic glutamate receptor activation in the regulation of inhibitory synaptic transmission in the rat hippocampus and cortex. We aimed to clarify what types of ionotropic glutamate receptors are involved in the modulation of GABA secretion, and what mechanism underlies this modulation. We have revealed that specific agonists of kainate and NMDA receptors, kainate and NMDA, like glutamate, induced the release of [3H]GABA from hippocampal and cortical nerve terminals suggesting the involvement of both types in the regulation of GABAergic transmission. Our results indicate preferential involvement of vesicular, but not cytosolic, pool in response to glutamate receptor activation. This is based on the finding that NO-711 (a specific inhibitor of plasma membrane GABA transporters), fails to attenuate [3H]GABA release. We have concluded that presynaptic glutamate receptor-induced modulation of the strength of synaptic response is due to increasing the release probability of synaptic vesicles.  相似文献   

7.
Retrograde signaling plays an important role in synaptic homeostasis, growth, and plasticity. A retrograde signal at the neuromuscular junction (NMJ) of Drosophila controls the homeostasis of neurotransmitter release. Here, we show that this retrograde signal is regulated by the postsynaptic activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII). Reducing CaMKII activity in muscles enhances the signal and increases neurotransmitter release, while constitutive activation of CaMKII in muscles inhibits the signal and decreases neurotransmitter release. Postsynaptic inhibition of CaMKII increases the number of presynaptic, vesicle-associated T bars at the active zones. Consistently, we show that glutamate receptor mutants also have a higher number of T bars; this increase is suppressed by postsynaptic activation of CaMKII. Furthermore, we demonstrate that presynaptic BMP receptor wishful thinking is required for the retrograde signal to function. Our results indicate that CaMKII plays a key role in the retrograde control of homeostasis of synaptic transmission at the NMJ of Drosophila.  相似文献   

8.
9.
Glutamate acts on postsynaptic glutamate receptors to mediate excitatory communication between neurons. The discovery that additional presynaptic glutamate receptors can modulate neurotransmitter release has added complexity to the way we view glutamatergic synaptic transmission. Here we review evidence of a physiological role for presynaptic glutamate receptors in neurotransmitter release. We compare the physiological roles of ionotropic and metabotropic glutamate receptors in short- and long-term regulation of synaptic transmission. Furthermore, we discuss the physiological conditions that are necessary for their activation, the source of the glutamate that activates them, their mechanisms of action and their involvement in higher brain function.  相似文献   

10.
The effect of hydrogen peroxide (H2O2) on excitatory and inhibitory synaptic transmission was studied at the lobster neuromuscular junction. H2O2 produced a dose dependent decrease in the amplitude of the junction potential (Vejp). This decrease was due to changes in both presynaptic transmitter release and the postsynaptic response to the neurotransmitter. Observed presynaptic changes due to exposure to H2O2 were a decrease in the amount of transmitter released, that is, quantal content, as well as a decrease in the fast facilitation, that is, the amplitude increase of successive excitatory junction potentials at a rate of 3 Hz. To discern postsynaptic changes, glutamate, the putative excitatory neurotransmitter for this preparation was applied directly to the bathing medium in order to bypass the presynaptic release process. H2O2 produced a decreased response of the glutamate receptor/ ionophore. The action of H2O2 was not selective to excitatory (glutamate-mediated) transmission because inhibitory (GABA-mediated) transmission was also depressed by H2O2. This effect was primarily presynaptic since H2O2 produced no change in the postsynaptic response to applied GABA.  相似文献   

11.
Synapses are highly specialized structures designed to guarantee precise and efficient communication between neurons and their target cells. Molecules of the extracellular matrix have an instructive role in the formation of the neuromuscular junction, the best-characterized synapse. In this review, the molecular mechanisms underlying these instructive signals will be discussed with particular emphasis on the receptors involved. Additionally, recent evidence for the involvement of specific adhesion complexes in the formation and modulation of synapses in the central nervous system will be reviewed. Synapses are specialized junctions between neurons and their target cells where information is transferred from the pre- to the postsynaptic cell. At most vertebrate synapses, this transfer is accomplished by the release of a specific neurotransmitter from the presynaptic nerve terminal. The release of neurotransmitter is initiated by the action potential and the subsequent influx of Ca(2+) into the presynaptic nerve terminal. This results in the rapid fusion of vesicles with the nerve membrane and the release of the neurotransmitter into the synaptic cleft. The neurotransmitter then diffuses across the cleft and binds to specific postsynaptic receptors, resulting in a change in the membrane potential of the postsynaptic cell. This can result in the generation of an action potential. The high precision of synaptic transmission requires that pre- and postsynaptic structures are both highly organized and in juxtaposition to each other. In addition, alterations in synaptic transmission are the basis of learning and memory and are likely to be accompanied by the remodeling of synaptic structures (Toni et al., 1999). Thus, the study of how synapses are formed during development is also of relevance for the understanding of the cellular and molecular processes involved in learning and memory. This review focuses on the molecular mechanisms involved in the formation and the function of synapses.  相似文献   

12.
13.
Lu  Bai  Je  Hyun-Soo 《Brain Cell Biology》2003,32(5-8):931-941
Recent studies have established that one of the major functions of neurotrophic factors is to regulate synaptic development and plasticity. This owes a great deal to the studies using the neuromuscular junction (NMJ) as a model system. In this review, we summarize the effects of various neurotrophic factors on the development and function of the neuromuscular synapses. We describe experiments addressing the role of neurotrophins, as well as that of other factors (GFLs, TGF-βs, and Wnts). The synaptic effects of neurotrophic factors are divided into two categories: acute effects on synaptic transmission and plasticity occurring within seconds or minutes after cells are exposed to a particular factor, and long-term regulation of synaptic structure and function that takes days to accomplish. We consider the presynaptic effects on the release of the neurotransmitter ACh, as well as the postsynaptic effects on the clustering of ACh receptors. Further studies of the mechanisms underlying these regulatory effects will help us better understand how neurotrophic factors can achieve diverse and synapse-specific modulation in the brain.  相似文献   

14.
Presynaptic nerve terminals are equipped with a number of presynaptic auto- and heteroreceptors, including ionotropic P2X and metabotropic P2Y receptors. P2 receptors serve as modulation sites of transmitter release by ATP and other nucleotides released by neuronal activity and pathological signals. A wide variety of P2X and P2Y receptors expressed at pre- and postsynaptic sites as well as in glial cells are involved directly or indirectly in the modulation of neurotransmitter release. Nucleotides are released from synaptic and nonsynaptic sites throughout the nervous system and might reach concentrations high enough to activate these receptors. By providing a fine-tuning mechanism these receptors also offer attractive sites for pharmacotherapy in nervous system diseases. Here we review the rapidly emerging data on the modulation of transmitter release by facilitatory and inhibitory P2 receptors and the receptor subtypes involved in these interactions.  相似文献   

15.
Synaptic transmission starts after the presynaptic neuron has released diffusing neurotransmitters, leading to postsynaptic receptor activation and a postsynaptic current, mostly mediated by glutamatergic (AMPARs) receptors for excitatory neurons. Despite intense experimental and theoretical research, it is still unclear how factors such as the synaptic cleft geometry, the organization, the number and the multiconductance state of receptors, the geometry of postsynaptic density (PSD), and the neurotransmitter release location, shape the mean and the variance of the postsynaptic current and its plastic changes. To estimate the synaptic current amplitude and to account for the stochastic nature of synaptic transmission, we develop a semianalytical method in which we obtain a general expression for the coefficient of variation. The method uses the experimental data about the multiconductance channels. We find that PSD morphological changes can significantly modulate the synaptic current, which is maximally reliable (the coefficient of variation is minimal) for an optimal size of the PSD, that depends on the vesicular release active zone. We show that this optimal PSD size is due to nonlinear phenomena involving the receptor multibinding cooperativity. We conclude that changes in the PSD geometry can sustain a form of synaptic plasticity, independent of a change in the number of receptors.  相似文献   

16.
Although the strength of quantal synaptic transmission is jointly controlled by pre- and post-synaptic mechanisms, the presynaptic mechanisms remain substantially less well characterized. Recent studies reveal that a single package of neurotransmitter is generally insufficient to activate all available postsynaptic receptors, whereas the sum of transmitter from multiple vesicles can result in receptor saturation. Thus, depending upon the number of vesicles released, a given synaptic pathway might be either 'reliable' or 'unreliable'. A lack of receptor saturation in turn makes it possible to modify quantal size by altering the flux of transmitter through the synaptic cleft. Studies are now illuminating several new mechanisms behind the regulation of this transmitter flux--characteristics that control how transmitter is loaded into vesicles, how it is released and the manner by which it interacts with postsynaptic receptors.  相似文献   

17.
Cholinergic synaptic contact between motor neuron and skeletal muscle fiber is perhaps one of the core objects for investigations of molecular mechanisms underlying the communication between neurons and innervated cells. In the studies conducted on this object in the past few decades, a large amount of experimental data was obtained that substantially complemented a traditional view on synaptic transmission. In particular, it was established that (i) acetylcholine is released from the nerve ending in both quantal and nonquantal ways; (ii) molecular mechanisms of the processes of the quantal acetylcholine release—spontaneous and evoked by electrical stimuli—have unique features and can be regulated independently; (iii) acetylcholine release from the nerve ending is accompanied by a release of a number of synaptically active molecules modulating the processes of secretion or reception of the main mediator; (iv) signal molecules affecting the process of cholinergic neurotransmission can be released not only from the nerve ending but also from glial cells and muscle fiber; (v) molecular mechanisms of the regulation of synaptic transmission are highly diverse and go beyond the alteration of the number of the released acetylcholine quanta. Thus, the neuromuscular junction shall be deemed currently as complicated and adaptive synapse characterized by a wide range of multiloop intercellular signaling pathways between presynaptic motor neuron ending, muscle fiber, and glial cells ensuring a high safety factor of synaptic transmission and the possibility of its fine tuning.  相似文献   

18.
Synaptic strength is thought to be determined by the number of presynaptic release sites, release probability and postsynaptic response to quantal release. Changes in these parameters are directly relevant to synaptic plasticity. However, our understanding of these determinants as they relate to synaptic function has been reformed by recent work on nanoscale organizations of synaptic proteins. Specifically, release probability is distributed heterogeneously among multiple release sites within a single active zone, and the quantal postsynaptic response depends strongly on the local distribution of receptors around the release site. These nanoscale characteristics reveal a new deeper layer of modulation of synaptic transmission and plasticity.  相似文献   

19.
In the central nervous system ATP is released from both neurones and astroglial cells acting as a homo- and heterocellular neurotransmitter. Glial cells express numerous purinoceptors of both ionotropic (P2X) and metabotropic (P2Y) varieties. Astroglial P2X receptors can be activated by ongoing synaptic transmission and can mediate fast local signalling through elevation in cytoplasmic Ca(2+) and Na(+) concentrations. These ionic signals can be translated into various physiological messages by numerous pathways, including release of gliotransmitters, metabolic support of neurones and regulation of activity of postsynaptic glutamate and GABA receptors. Ionotropic purinoceptors represent a novel pathway of glia-driven modulation of synaptic signalling that involves the release of ATP from neurones and astrocytes followed by activation of P2X receptors which can regulate synaptic activity by variety of mechanisms expressed in both neuronal and glial compartments.  相似文献   

20.
Endogenous cannabinoids (endocannabinoids) serve as retrograde messengers at synapses in various regions of the brain. They are released from postsynaptic neurons and cause transient and long-lasting reduction of neurotransmitter release through activation of presynaptic cannabinoid receptors. Endocannabinoid release is induced either by increased postsynaptic Ca(2+) levels or by activation of G(q/11)-coupled receptors. When these two stimuli coincide, endocannabinoid release is markedly enhanced, which is attributed to the Ca(2+) dependency of phospholipase Cbeta (PLCbeta). This Ca(2+)-assisted receptor-driven endocannabinoid release is suggested to participate in various forms of synaptic plasticity, including short-term associative plasticity in the cerebellum and spike-timing-dependent long-term depression in the somatosensory cortex. In these forms of plasticity, PLCbeta seems to function as a coincident detector of presynaptic and postsynaptic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号