首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Four subpopulations of a Plutella xylostella (L.) strain from Malaysia (F(4) to F(8)) were selected with Bacillus thuringiensis subsp. kurstaki HD-1, Bacillus thuringiensis subsp. aizawai, Cry1Ab, and Cry1Ac, respectively, while a fifth subpopulation was left as unselected (UNSEL-MEL). Bioassays at F(9) found that selection with Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai gave resistance ratios of >95, 10, 7, and 3, respectively, compared with UNSEL-MEL (>10,500, 500, >100, and 26, respectively, compared with a susceptible population, ROTH). Resistance to Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai in UNSEL-MEL declined significantly by F(9). The Cry1Ac-selected population showed very little cross-resistance to Cry1Ab, B. thuringiensis subsp. kurstaki, and B. thuringiensis subsp. aizawai (5-, 1-, and 4-fold compared with UNSEL-MEL), whereas the Cry1Ab-, B. thuringiensis subsp. kurstaki-, and B. thuringiensis subsp. aizawai-selected populations showed high cross-resistance to Cry1Ac (60-, 100-, and 70-fold). The Cry1Ac-selected population was reselected (F(9) to F(13)) to give a resistance ratio of >2,400 compared with UNSEL-MEL. Binding studies with (125)I-labeled Cry1Ab and Cry1Ac revealed complete lack of binding to brush border membrane vesicles prepared from Cry1Ac-selected larvae (F(15)). Binding was also reduced, although less drastically, in the revertant population, which indicates that a modification in the common binding site of these two toxins was involved in the resistance mechanism in the original population. Reciprocal genetic crosses between Cry1Ac-reselected and ROTH insects indicated that resistance was autosomal and showed incomplete dominance. At the highest dose of Cry1Ac tested, resistance was recessive while at the lowest dose it was almost completely dominant. The F(2) progeny from a backcross of F(1) progeny with ROTH was tested with a concentration of Cry1Ac which would kill 100% of ROTH moths. Eight of the 12 families tested had 60 to 90% mortality, which indicated that more than one allele on separate loci was responsible for resistance to Cry1Ac.  相似文献   

2.
A population (SERD3) of the diamondback moth (Plutella xylostella L.) with field-evolved resistance to Bacillus thuringiensis subsp. kurstaki HD-1 (Dipel) and B. thuringiensis subsp. aizawai (Florbac) was collected. Laboratory-based selection of two subpopulations of SERD3 with B. thuringiensis subsp. kurstaki (Btk-Sel) or B. thuringiensis subsp. aizawai (Bta-Sel) increased resistance to the selecting agent with little apparent cross-resistance. This result suggested the presence of independent resistance mechanisms. Reversal of resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai was observed in the unselected SERD3 subpopulation. Binding to midgut brush border membrane vesicles was examined for insecticidal crystal proteins specific to B. thuringiensis subsp. kurstaki (Cry1Ac), B. thuringiensis subsp. aizawai (Cry1Ca), or both (Cry1Aa and Cry1Ab). In the unselected SERD3 subpopulation (ca. 50- and 30-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai), specific binding of Cry1Aa, Cry1Ac, and Cry1Ca was similar to that for a susceptible population (ROTH), but binding of Cry1Ab was minimal. The Btk-Sel (ca. 600-and 60-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) and Bta-Sel (ca. 80-and 300-fold resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai) subpopulations also showed reduced binding to Cry1Ab. Binding of Cry1Ca was not affected in the Bta-Sel subpopulation. The results suggest that reduced binding of Cry1Ab can partly explain resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai. However, the binding of Cry1Aa, Cry1Ac, and Cry1Ca and the lack of cross-resistance between the Btk-Sel and Bta-Sel subpopulations also suggest that additional resistance mechanisms are present.  相似文献   

3.
A laboratory strain (GY) of Helicoverpa armigera (Hubner) was established from surviving larvae collected from transgenic cotton expressing a Bacillus thuringiensis var. kurstaki insecticidal protein (Bt cotton) in Gaoyang County, Hebei Province, People's Republic of China, in 2001. The GYBT strain was derived from the GY strain through 28 generations of selection with activated Cry1Ac delivered by diet surface contamination. When resistance to Cry1Ac in the GYBT strain increased to 564-fold after selection, we detected high levels of cross-resistance to Cry1Aa (103-fold) and Cry1Ab (>46-fold) in the GYBT strain with reference to those in the GY strain. The GYBT strain had a low level of cross-resistance to B. thuringiensis var. kurstaki formulation (Btk) (5-fold) and no cross-resistance to Cry2Aa (1.4-fold). Genetic analysis showed that Cry1Ac resistance in the GYBT strain was controlled by one autosomal and incompletely recessive gene. The cross-resistance pattern and inheritance mode suggest that the Cry1Ac resistance in the GYBT strain of H. armigera belongs to "mode 1," the most common type of lepidopteran resistance to B. thuringiensis toxins. A cadherin gene was cloned and sequenced from both the GY and GYBT strains. Disruption of the cadherin gene by a premature stop codon was associated with a high level of Cry1Ac resistance in H. armigera. Tight linkage between Cry1Ac resistance and the cadherin locus was observed in a backcross analysis. Together with previous evidence found with Heliothis virescens and Pectinophora gossypiella, our results confirmed that the cadherin gene is a preferred target for developing DNA-based monitoring of B. thuringiensis resistance in field populations of lepidopteran pests.  相似文献   

4.
The long-term usefulness of Bacillus thuringiensis Cry toxins, either in sprays or in transgenic crops, may be compromised by the evolution of resistance in target insects. Managing the evolution of resistance to B. thuringiensis toxins requires extensive knowledge about the mechanisms, genetics, and ecology of resistance genes. To date, laboratory-selected populations have provided information on the diverse genetics and mechanisms of resistance to B. thuringiensis, highly resistant field populations being rare. However, the selection pressures on field and laboratory populations are very different and may produce resistance genes with distinct characteristics. In order to better understand the genetics, biochemical mechanisms, and ecology of field-evolved resistance, a diamondback moth (Plutella xylostella) field population (Karak) which had been exposed to intensive spraying with B. thuringiensis subsp. kurstaki was collected from Malaysia. We detected a very high level of resistance to Cry1Ac; high levels of resistance to B. thuringiensis subsp. kurstaki Cry1Aa, Cry1Ab, and Cry1Fa; and a moderate level of resistance to Cry1Ca. The toxicity of Cry1Ja to the Karak population was not significantly different from that to a standard laboratory population (LAB-UK). Notable features of the Karak population were that field-selected resistance to B. thuringiensis subsp. kurstaki did not decline at all in unselected populations over 11 generations in laboratory microcosm experiments and that resistance to Cry1Ac declined only threefold over the same period. This finding may be due to a lack of fitness costs expressed by resistance strains, since such costs can be environmentally dependent and may not occur under ordinary laboratory culture conditions. Alternatively, resistance in the Karak population may have been near fixation, leading to a very slow increase in heterozygosity. Reciprocal genetic crosses between Karak and LAB-UK populations indicated that resistance was autosomal and recessive. At the highest dose of Cry1Ac tested, resistance was completely recessive, while at the lowest dose, it was incompletely dominant. A direct test of monogenic inheritance based on a backcross of F1 progeny with the Karak population suggested that resistance to Cry1Ac was controlled by a single locus. Binding studies with 125I-labeled Cry1Ab and Cry1Ac revealed greatly reduced binding to brush border membrane vesicles prepared from this field population.  相似文献   

5.
Crops genetically engineered to produce Bacillus thuringiensis toxins for insect control can reduce use of conventional insecticides, but insect resistance could limit the success of this technology. The first generation of transgenic cotton with B. thuringiensis produces a single toxin, Cry1Ac, that is highly effective against susceptible larvae of pink bollworm (Pectinophora gossypiella), a major cotton pest. To counter potential problems with resistance, second-generation transgenic cotton that produces B. thuringiensis toxin Cry2Ab alone or in combination with Cry1Ac has been developed. In greenhouse bioassays, a pink bollworm strain selected in the laboratory for resistance to Cry1Ac survived equally well on transgenic cotton with Cry1Ac and on cotton without Cry1Ac. In contrast, Cry1Ac-resistant pink bollworm had little or no survival on second-generation transgenic cotton with Cry2Ab alone or with Cry1Ac plus Cry2Ab. Artificial diet bioassays showed that resistance to Cry1Ac did not confer strong cross-resistance to Cry2Aa. Strains with >90% larval survival on diet with 10 microg of Cry1Ac per ml showed 0% survival on diet with 3.2 or 10 microg of Cry2Aa per ml. However, the average survival of larvae fed a diet with 1 microg of Cry2Aa per ml was higher for Cry1Ac-resistant strains (2 to 10%) than for susceptible strains (0%). If plants with Cry1Ac plus Cry2Ab are deployed while genes that confer resistance to each of these toxins are rare, and if the inheritance of resistance to both toxins is recessive, the efficacy of transgenic cotton might be greatly extended.  相似文献   

6.
Genetics of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac   总被引:4,自引:0,他引:4  
Laboratory selection increased resistance of pink bollworm (Pectinophora gossypiella) to the Bacillus thuringiensis toxin Cry1Ac. Three selections with Cry1Ac in artificial diet increased resistance from a low level to >100-fold relative to a susceptible strain. We used artificial diet bioassays to test F1 hybrid progeny from reciprocal crosses between resistant and susceptible strains. The similarity between F1 progeny from the two reciprocal crosses indicates autosomal inheritance of resistance. The dominance of resistance to Cry1Ac depended on the concentration. Resistance was codominant at a low concentration of Cry1Ac, partially recessive at an intermediate concentration, and completely recessive at a high concentration. Comparison of the artificial diet results with previously reported results from greenhouse bioassays shows that the high concentration of Cry1Ac in bolls of transgenic cotton is essential for achieving functionally recessive inheritance of resistance.  相似文献   

7.
采用浸叶法测定了2003年秋季、2004年春季采自广东惠州、福建福州、浙江杭州和江苏南京的小菜蛾Plutella xylostella田间种群对Cry1Aa、Cry1Ab、Cry1Ac和Cry2Aa以及Bt制剂kurstaki亚种 (Bacillus thuringiensis subsp. kurstaki, Btk)的抗性水平。与敏感品系PHI-S相比,广东惠州田间小菜蛾种群的抗性水平最高,其对Cry1Ab和Cry1Ac的抗性分别达到了168和120倍,均为高抗水平; 对Btk制剂的抗性有47倍,达到了中抗水平;对Cry1Aa和Cry2Aa具有低水平抗性 (分别为5.8和5.6倍)。福建福州、浙江杭州和江苏南京田间小菜蛾种群抗性水平相近,对Cry1Ab和Cry1Ac具有低至中等水平抗性 (8~28倍),对Btk制剂具有低水平抗性 (3.5~7倍),对Cry1Aa和Cry2Aa还没有产生明显抗性。因此,在我国东南沿海地区要注意Btk制剂与Bt其他亚种制剂或其他生物杀虫剂轮换使用,以减小Bt制剂对小菜蛾的选择压力,延缓小菜蛾对Bt抗性的发展。  相似文献   

8.
A population of cabbage looper, Trichoplusia ni (Hübner), collected from commercial greenhouses in the lower mainland of British Columbia, Canada, in 2001 showed a resistance level of 24-fold to Dipel, a product of Bacillus thuringiensis (Bt) subspecies kurstaki. This population was selected with Cry1Ac, the major Bt Cry toxin in Dipel, to obtain a homogenous population resistant to Cry1Ac. The resulting strain of T. ni, named GLEN-Cry1Ac, was highly resistant to Cry1Ac with a resistance ratio of approximately 1000-fold. The larvae from the GLEN-Cry1Ac strain could survive on Cry1Ac-expressing transgenic broccoli plants that were highly insecticidal to T. ni and diamondback moth, Plutella xylostella (L.). The inheritance of Cry1Ac resistance in this T. ni strain was autosomal and incompletely recessive. The degree of dominance of the resistance was -0.402 and -0.395, respectively, for the neonates in reciprocal crosses between the GLEN-Cry1Ac and a laboratory strain of T. ni. Using chi2 goodness-of-fit test, we demonstrated that the inhibition of larval growth resulting from testing 12 toxin doses in the progeny of the backcross fit the predicted larval responses based on a monogenic inheritance model. Therefore, we conclude that the inheritance of the resistance to Cry1Ac in the T. ni larvae is monogenic.  相似文献   

9.
Abstract:  To monitor the resistance of field populations of the diamondback moth Plutella xylostella in China to the insecticidal protein Cry1Ac, Cry1Ba and commercial formulation Bacillus thuringiensis var. kurstaki (Btk), six representative populations of the diamondback moth were collected from Shanghai, Shandong, Hubei, Hunan, Zhejiang and Guangdong provinces of China where crucifer crop plants are intensively planted. Bioassay results showed that the populations of the diamondback moth from different locations exhibited different levels of resistance, compared with a susceptible laboratory population. The Guangdong field population was 56.15- and 21.90-fold resistant to Cry1Ac and Btk, respectively. Shanghai, Hunan, Shandong and Zhejiang populations were 37.85-, 17.24-, 10.24- and 9.41-fold resistant to Cry1Ac, respectively, but were not resistant to Btk. The Hubei population did not show resistance to Cry1Ac and Btk. Almost all tested populations were susceptible to Cry1Ba, but the Guangdong population showed some tolerance to Cry1Ba with a LC50 of 0.69  μ g/ml which was 6.17-fold higher than that of the susceptible population. The results suggested that the complex resistance patterns of field populations of P. xylostella need to be considered for expression of Bt toxin genes in genetically-engineered crop plants and commercial formulations.  相似文献   

10.
Bioassays (at generation 1, G1) using fipronil, spinosad, indoxacarb, and Bacillus thuringiensis toxins Cry1Ac and Cry1Ca with a newly collected field population of Plutella xylostella (L.) from farmers fields in the Cameron Highlands, Malaysia, indicated a resistance ratio of approximately 400-, 1,170-, 330-, 2,840-, and 1,410-fold, respectively, compared with a laboratory-susceptible population of P. xylostella (ROTH). At G3, the field-derived population was divided into two subpopulations, one was selected (G3 to G7) with fipronil (fip-SEL), whereas the second was left unselected (UNSEL). Bioassays at G8 found that selection with fipronil gave a resistance ratio of approximately 490 compared with UNSEL and approximately 770 compared with ROTH. The resistance ratio for fipronil, spinosad, indoxacarb, Cry1Ac, and Cry1Ca in the UNSEL population declined significantly by G8. Logit regression analysis of F1 reciprocal crosses between fip-SEL (at G8) and UNSEL indicated that resistance to fipronil in the fip-SEL population was inherited as an autosomal, incompletely recessive (D(LC) = 0.37) trait. At the highest dose of fipronil tested, resistance was completely recessive, whereas at the lowest dose it was incompletely recessive. A direct test of monogenic inheritance based on a backcross of F1 progeny with fip-SEL suggested that resistance to fipronil was controlled by a single locus. The fip-SEL population at G8 showed little change in its response to spinosad and indoxacarb compared with G1, whereas its susceptibility to Cry1Ac and Cry1Ca increased markedly over the selection period. This suggests that there may be some low level of cross-resistance between fipronil, spinosad, and indoxacarb.  相似文献   

11.
So far, the only insect that has evolved resistance in the field to Bacillus thuringiensis toxins is the diamondback moth (Plutella xylostella). Documentation and analysis of resistant strains rely on comparisons with laboratory strains that have not been exposed to B. thuringiensis toxins. Previously published reports show considerable variation among laboratories in responses of unselected laboratory strains to B. thuringiensis toxins. Because different laboratories have used different unselected strains, such variation could be caused by differences in bioassay methods among laboratories, genetic differences among unselected strains, or both. Here we tested three unselected strains against five B. thuringiensis toxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ca, and Cry1Da) using two bioassay methods. Tests of the LAB-V strain from The Netherlands in different laboratories using different bioassay methods yielded only minor differences in results. In contrast, side-by-side comparisons revealed major genetic differences in susceptibility between strains. Compared with the LAB-V strain, the ROTH strain from England was 17- to 170-fold more susceptible to Cry1Aa and Cry1Ac, respectively, whereas the LAB-PS strain from Hawaii was 8-fold more susceptible to Cry1Ab and 13-fold more susceptible to Cry1Da and did not differ significantly from the LAB-V strain in response to Cry1Aa, Cry1Ac, or Cry1Ca. The relative potencies of toxins were similar among LAB-V, ROTH, and LAB-PS, with Cry1Ab and Cry1Ac being most toxic and Cry1Da being least toxic. Therefore, before choosing a standard reference strain upon which to base comparisons, it is highly advisable to perform an analysis of variation in susceptibility among field and laboratory populations.  相似文献   

12.
The susceptibility of larvae of the diamondback moth, Plutella xylostella Linnaeus to purified crystal proteins and spore-crystal preparations of Bacillus thuringiensis was investigated for 13 populations from seven states in India. The LC50 (microg ml(-1), 48 h) values of Cry proteins for different populations of P. xylostella ranged from 0.14-3.74 (Cry1Aa), 0.007-1.25 (Cry1Ab), 0.18-2.47 (Cry1Ac) and 0.12-3.0 (Cry1C). The LC50 (mg (ai) l(-1), 48 h) of spore-crystal preparations ranged from 0.02-0.98 (HD-1) and 0.06-2.14 (HD-73). Significantly higher LC50 values for all tested toxins and strains were obtained with populations collected from Iruttupallam and Ottanchathiram in the southern state of Tamil Nadu, whereas some of the populations collected from the northern part of India were more susceptible than the susceptible IARI 17-65 population. The high levels of resistance in the Iruttupallam and Ottanchathiram populations to Cry1Ab suggested selection pressure by Cry1Ab, which is the predominant toxin in B. thuringiensis formulations used in India. Cry1Ab was found to be more toxic than the other toxins. The population from Iruttupallam showed increased resistance following selection with Cry1Ab in the laboratory (LC50 from 1.25 to 4.31 microg ml(-1) over two generations) and also showed cross resistance to CrylAa and CrylAc. The resistance to Biobit in the field population from Iruttupallam declined slowly; requiring c. 33 generations for an overall 10-fold decline in LC50 when the insects were reared in the laboratory without exposure to B. thuringensis.  相似文献   

13.
The cabbage looper, Trichoplusia ni, is one of only two insect species that have evolved resistance to Bacillus thuringiensis in agricultural situations. The trait of resistance to B. thuringiensis toxin Cry1Ac from a greenhouse-evolved resistant population of T. ni was introgressed into a highly inbred susceptible laboratory strain. The resulting introgression strain, GLEN-Cry1Ac-BCS, and its nearly isogenic susceptible strain were subjected to comparative genetic and biochemical studies to determine the mechanism of resistance. Results showed that midgut proteases, hemolymph melanization activity, and midgut esterase were not altered in the GLEN-Cry1Ac-BCS strain. The pattern of cross-resistance of the GLEN-Cry1Ac-BCS strain to 11 B. thuringiensis Cry toxins showed a correlation of the resistance with the Cry1Ab/Cry1Ac binding site in T. ni. This cross-resistance pattern is different from that found in a previously reported laboratory-selected Cry1Ab-resistant T. ni strain, evidently indicating that the greenhouse-evolved resistance involves a mechanism different from the laboratory-selected resistance. Determination of specific binding of B. thuringiensis toxins Cry1Ab and Cry1Ac to the midgut brush border membranes confirmed the loss of midgut binding to Cry1Ab and Cry1Ac in the resistant larvae. The loss of midgut binding to Cry1Ab/Cry1Ac is inherited as a recessive trait, which is consistent with the recessive inheritance of Cry1Ab/Cry1Ac resistance in this greenhouse-derived T. ni population. Therefore, it is concluded that the mechanism for the greenhouse-evolved Cry1Ac resistance in T. ni is an alteration affecting the binding of Cry1Ab and Cry1Ac to the Cry1Ab/Cry1Ac binding site in the midgut.  相似文献   

14.
A disrupted allele (r1) of a cadherin gene (Ha_BtR) is genetically associated with incompletely recessive resistance to Bacillus thuringiensis toxin Cry1Ac in a Cry1Ac-selected strain (GYBT) of Helicoverpa armigera. The r1 allele of Ha_BtR was introgressed into a susceptible SCD strain by crossing the GYBT strain to the SCD strain, followed by repeated backcrossing to the SCD strain and molecular marker assisted family selection. The introgressed strain (designated as SCD-r1, carrying homozygous r1 allele) obtained 438-fold resistance to Cry1Ac, >41-fold resistance to Cry1Aa and 31-fold resistance Cry1Ab compared with the SCD strain; however, there was no significant difference in susceptibility to Cry2Aa between the integrated and parent strains. It confirms that the loss of function mutation of Ha_BtR alone can confer medium to high levels of resistance to the three Cry1A toxins in H. armigera. Reciprocal crosses between the SCD and SCD-r1 strains showed that resistance to Cry1Ac in the SCD-r1 strain was completely recessive. Life tables of the SCD and SCD-r1 strains on artificial diet in the laboratory were constructed, and results showed that the net replacement rate (R0) did not differ between the strains. The toxicity of two chemical insecticides, fenvalerate and monocrotophos, against the SCD-r1 strain was not significantly different from that to the SCD strain. However, larval development time of the SCD-r1 strain was significantly longer than that of the SCD strain, indicating a fitness cost of slower larval growth is associated with Ha_BtR disruption in H. armigera.  相似文献   

15.
16.
Evolution of resistance by pests could cut short the success of transgenic plants producing toxins from Bacillus thuringiensis, such as Bt cotton. The most common mechanism of insect resistance to B. thuringiensis is reduced binding of toxins to target sites in the brush border membrane of the larval midgut. We compared toxin binding in resistant and susceptible strains of Pectinophora gossypiella, a major pest of cotton worldwide. Using Cry1Ab and Cry1Ac labeled with (125)I and brush border membrane vesicles (BBMV), competition experiments were performed with unlabeled Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ca, Cry1Ja, Cry2Aa, and Cry9Ca. In the susceptible strain, Cry1Aa, Cry1Ab, Cry1Ac, and Cry1Ja bound to a common binding site that was not shared by the other toxins tested. Reciprocal competition experiments with Cry1Ab, Cry1Ac, and Cry1Ja showed that these toxins do not bind to any additional binding sites. In the resistant strain, binding of (125)I-Cry1Ac was not significantly affected; however, (125)I-Cry1Ab did not bind to the BBMV. This result, along with previous data from this strain, shows that the resistance fits the "mode 1" pattern of resistance described previously in Plutella xylostella, Plodia interpunctella, and Heliothis virescens.  相似文献   

17.
The American bollworm, H. armigera, evolved 31-fold resistance to selection pressure of B. thuringiensis endotoxin Cry1Ac within six generations. The Cry1Ac selected larvae of H. armigera showed cross-resistance to Cry1Aa and Cry1Ab both in terms of mortality and growth reduction. Studies on mechanisms of resistance to Cry1Ac showed that proteases of resistant insects degraded Cry1Ac faster than those of susceptible insects, which led to the relative unavailability of toxin of about 58 kDa for binding and perforation of midgut epithelial membrane of the target insect. Besides, resistant and susceptible populations of H. armigera differed in the binding of their receptors with Cry1Ac toxin. These results suggest the possibility of both mechanisms existing in imparting resistance. These findings mandate the necessity of B. thuringiensis resistance management for usage of B. thuringiensis either as a conventional insecticide or through transgenic crops.  相似文献   

18.
AIMS: To investigate fusion expression between Bacillus thuringiensis crystal protein and a foreign protein, the expression of a fusion protein comprised of Cry1Ac, and enhanced green fluorescent protein (EGFP) in B. thuringiensis Cry(-)B strain was examined. METHODS AND RESULTS: The N-terminal fusion expression of EGFP in Cry1Ac was attempted under the control of the native cry1Ac promoter. The EGFP gene was cloned into pProMu and named pProMu-EGFP. The transformant, ProMu-EGFP/CB produced parasporal inclusions that were of bipyramidal-shaped crystals in size ranging from 200 to 300 nm. The fusion protein was approximately 150 kDa and identified by the immunoblot analysis using a Cry1Ac antibody and also a GFP antibody. The LC(50) of the ProMu-EGFP/CB was twofold higher when compared with that by the ProAc/CB. However, the crystal protein produced by the ProMu-EGFP/CB was effective on Plutella xylostella larvae. CONCLUSIONS: The ProMu-EGFP/CB produced bipyramidal shaped and insecticidal crystals comprising fusion proteins. SIGNIFICANCE AND IMPACT OF THE STUDY: Through the N-terminal fusion expression of EGFP and Cry1Ac, expression and crystallization between the B. thuringiensis crystal protein and a foreign protein were validated.  相似文献   

19.
Two strains of the diamondback moth, Plutella xylostella (L.), were selected using Cry1C protoxin and transgenic broccoli plants expressing a Cry1C toxin of Bacillus thuringiensis (Bt). Both strains were resistant to Cry1C but had different cross-resistance patterns. We used 12 Bt protoxins for cross-resistance tests, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Bb, Cry1C, Cry1D, Cry1E, Cry1F, Cry1J, Cry2Ab, Cry9Aa, and Cry9C. Compared with the unselected sister strain (BCS), the resistance ratio (BR) of one strain (BCS-Cry1C-1) to the Cry1C protoxin was 1,090-fold with high level of cross-resistance to Cry1Aa, Cry1Ab, Cry1Ac, Cry1F, and Cry1J (RR > 390-fold). The cross-resistance to Cry1A, Cry1F, and Cry1J in this strain was probably related to the Cry1A resistance gene(s) that came from the initial field population and was caused by intensive sprayings of Bt products containing Cry1A protoxins. The neonates of this strain can survive on transgenic broccoli plants expressing either Cry1Ac or Cry1C toxins. The other strain (BCS-Cry1C-2) was highly resistant to Cry1C but not cross-resistant to other Bt protoxins. The neonates of this strain can survive on transgenic broccoli expressing Cry1C toxin but not Cry1Ac toxin. The gene(s) conferring resistance to Cry1C segregates independently from Cry1Ac resistance in these strains. The toxicity of Cry1E and Cry2Ab protoxins was low to all of the three strains. The overall progress of all work has resulted in a unique model system to test the stacked genes strategy for resistance management of Bt transgenic crops.  相似文献   

20.
Insecticidal crystal proteins from Bacillus thuringiensis in sprays and transgenic crops are extremely useful for environmentally sound pest management, but their long-term efficacy is threatened by evolution of resistance by target pests. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to B. thuringiensis in open-field populations. The only known mechanism of resistance to B. thuringiensis in the diamondback moth is reduced binding of toxin to midgut binding sites. In the present work we analyzed competitive binding of B. thuringiensis toxins Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F to brush border membrane vesicles from larval midguts in a susceptible strain and in resistant strains from the Philippines, Hawaii, and Pennsylvania. Based on the results, we propose a model for binding of B. thuringiensis crystal proteins in susceptible larvae with two binding sites for Cry1Aa, one of which is shared with Cry1Ab, Cry1Ac, and Cry1F. Our results show that the common binding site is altered in each of the three resistant strains. In the strain from the Philippines, the alteration reduced binding of Cry1Ab but did not affect binding of the other crystal proteins. In the resistant strains from Hawaii and Pennsylvania, the alteration affected binding of Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F. Previously reported evidence that a single mutation can confer resistance to Cry1Ab, Cry1Ac, and Cry1F corresponds to expectations based on the binding model. However, the following two other observations do not: the mutation in the Philippines strain affected binding of only Cry1Ab, and one mutation was sufficient for resistance to Cry1Aa. The imperfect correspondence between the model and observations suggests that reduced binding is not the only mechanism of resistance in the diamondback moth and that some, but not all, patterns of resistance and cross-resistance can be predicted correctly from the results of competitive binding analyses of susceptible strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号