首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geranyl-coenzyme A (CoA)-carboxylase (GCase; AtuC/AtuF) and methylcrotonyl-CoA-carboxylase (MCase; LiuB/LiuD) are characteristic enzymes of the catabolic pathway of acyclic terpenes (citronellol and geraniol) and of saturated methyl-branched compounds, such as leucine or isovalerate, respectively. Proteins encoded by two gene clusters (atuABCDEFGH and liuRABCDE) of Pseudomonas aeruginosa PAO1 were essential for acyclic terpene utilization (Atu) and for leucine and isovalerate utilization (Liu), respectively, as revealed by phenotype analysis of 10 insertion mutants, two-dimensional gel electrophoresis, determination of GCase and MCase activities, and Western blot analysis of wild-type and mutant strains. Analysis of the genome sequences of other pseudomonads (P. putida KT2440 and P. fluorescens Pf-5) revealed candidate genes for Liu proteins for both species and candidate genes for Atu proteins in P. fluorescens. This result concurred with the finding that P. fluorescens, but not P. putida, could grow on acyclic terpenes (citronellol and citronellate), while both species were able to utilize leucine and isovalerate. A regulatory gene, atuR, was identified upstream of atuABCDEFGH and negatively regulated expression of the atu gene cluster.  相似文献   

2.
Geranyl-coenzyme A (CoA)-carboxylase (GCase; AtuC/AtuF) and methylcrotonyl-CoA-carboxylase (MCase; LiuB/LiuD) are characteristic enzymes of the catabolic pathway of acyclic terpenes (citronellol and geraniol) and of saturated methyl-branched compounds, such as leucine or isovalerate, respectively. Proteins encoded by two gene clusters (atuABCDEFGH and liuRABCDE) of Pseudomonas aeruginosa PAO1 were essential for acyclic terpene utilization (Atu) and for leucine and isovalerate utilization (Liu), respectively, as revealed by phenotype analysis of 10 insertion mutants, two-dimensional gel electrophoresis, determination of GCase and MCase activities, and Western blot analysis of wild-type and mutant strains. Analysis of the genome sequences of other pseudomonads (P. putida KT2440 and P. fluorescens Pf-5) revealed candidate genes for Liu proteins for both species and candidate genes for Atu proteins in P. fluorescens. This result concurred with the finding that P. fluorescens, but not P. putida, could grow on acyclic terpenes (citronellol and citronellate), while both species were able to utilize leucine and isovalerate. A regulatory gene, atuR, was identified upstream of atuABCDEFGH and negatively regulated expression of the atu gene cluster.  相似文献   

3.
The enzymes involved in the catabolism of leucine are encoded by the liu gene cluster in Pseudomonas aeruginosa PAO1. A mutant in the liuE gene (ORF PA2011) of P. aeruginosa was unable to utilize both leucine/isovalerate and acyclic terpenes as the carbon source. The liuE mutant grown in culture medium with citronellol accumulated metabolites of the acyclic terpene pathway, suggesting an involvement of liuE in both leucine/isovalerate and acyclic terpene catabolic pathways. The LiuE protein was expressed as a His-tagged recombinant polypeptide purified by affinity chromatography in Escherichia coli . LiuE showed a mass of 33 kDa under denaturing and 79 kDa under nondenaturing conditions. Protein sequence alignment and fingerprint sequencing suggested that liuE encodes 3-hydroxy-3-methylglutaryl-coenzyme A lyase (HMG-CoA lyase), which catalyzes the cleavage of HMG-CoA to acetyl-CoA and acetoacetate. LiuE showed HMG-CoA lyase optimal activity at a pH of 7.0 and 37 °C, an apparent K m of 100 μM for HMG-CoA and a V max of 21 μmol min−1 mg−1. These results demonstrate that the liuE gene of P. aeruginosa encodes for the HMG-CoA lyase, an essential enzyme for growth in both leucine and acyclic terpenes.  相似文献   

4.
5.
Pseudomonas aeruginosa is able to utilize leucine/isovalerate and acyclic terpenes as sole carbon sources. Key enzymes which play an important role in these catabolic pathways are 3-hydroxy-3-methylglutaryl-coenzyme A (CoA) lyase (EC 4.1.3.4; HMG-CoA lyase) and the 3-hydroxy-3-isohexenylglutaryl-CoA lyase (EC 4.1.2.26; HIHG-CoA lyase), respectively. HMG-CoA lyase is encoded by the liuE gene while the gene for HIHG-CoA lyase remains unidentified. A mutant in the liuE gene was unable to utilize both leucine/isovalerate and acyclic terpenes indicates an involvement of liuE in both catabolic pathways (Chávez-Avilés et al. 2009, FEMS Microbiol Lett 296:117–123). The LiuE protein was purified as a His-tagged recombinant protein and in addition to show HMG-CoA lyase activity (Chávez-Avilés et al. 2009, FEMS Microbiol Lett 296:117–123), also displays HIHG-CoA lyase activity, indicating a bifunctional role in both the leucine/isovalerate and acyclic terpenes catabolic pathways.  相似文献   

6.
Mitochondrial medium-chain acyl-CoA dehydrogenase is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patient has been previously reported. We cloned the gene of rat mitochondrial medium-chain acyl-CoA dehydrogenase into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 3' of the gene. The cloned gene was overexpressed in Escherichia coli and the soluble protein was purified with a nickel Hi-Trap chelating metal affinity column in 88% yield to apparent homogeneity. The specific activity of the purified His-tagged rat mitochondrial medium-chain acyl-CoA dehydrogenase was 4.0 U/mg. Arg256 is a highly conserved amino acid, which may play an important role in enzymatic reaction based on the crystal structure of medium-chain acyl-CoA dehydrogenase. We constructed four mutant expression plasmids of the enzyme using site-directed mutagenesis. Mutant proteins were overexpressed in E. coli and purified with a nickel metal affinity column. Kinetic studies of wild-type and mutant proteins were carried out, and the result confirmed that Arg256 is a very important residue of rat mitochondrial medium-chain acyl-CoA dehydrogenase. Our overexpression in E. coli and one-step purification of the highly active rat mitochondrial medium-chain acyl-CoA dehydrogenase greatly facilitated our further investigation of this enzyme, and our result from site-directed mutagenesis increased our understanding of medium-chain acyl-CoA dehydrogenase.  相似文献   

7.
Rat peroxisomal acyl-CoA oxidase I is a key enzyme for the beta-oxidation of fatty acids, and the deficiency of this enzyme in patients has been previously reported. We cloned the gene of rat peroxisomal acyl-CoA oxidase I into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 5' end of the gene. The cloned gene was overexpressed in Escherichia coli and the soluble protein was purified with a nickel HiTrap chelating metal-affinity column in 90% yield to apparent homogeneity. The specific activity of the purified His-tagged rat peroxisomal acyl-CoA oxidase I was 1.5 micromol/min/mg. It has been proposed that Glu421 is a catalytic residue responsible for deprotonation of alpha-proton of acyl-CoA substrate. We constructed four mutant expression plasmids of the enzyme, pACO(E421D), pACO(E421A), pACO(E421Q), and pACO(E421G) using site-directed mutagenesis. Mutant proteins were overexpressed in E. coli and purified with a nickel metal-affinity column. Kinetic studies of wild-type and mutant proteins were carried out, and the result confirmed that Glu421 is a catalytic residue of rat peroxisomal acyl-CoA oxidase I. Our overexpression in E. coli and one-step purification of the highly active N-terminal His-tagged rat peroxisomal acyl-CoA oxidase I greatly facilitated our further investigation of this enzyme, and our result from site-directed mutagenesis increased our understanding of the mechanism for the reaction catalyzed by peroxisomal acyl-CoA oxidase I.  相似文献   

8.
9.
10.
P Kathir  K Ippen-Ihler 《Plasmid》1991,26(1):40-54
We devised a method for construction of insertion mutations in F plasmid tra region genes as a means of investigating the functions associated with previously uncharacterized loci. First, we constructed mutations in vitro, by insertion of a kanamycin resistance gene into a unique restriction site within a tra region fragment carried by a small, chimeric plasmid. Second, we crossed the insertion mutations, in vivo, onto a plasmid containing the complete F tra region sequence (either F lac, or pOX38, a Tra+ F plasmid derivative). Using this method, we obtained F lac mutant derivatives carrying KmR gene insertions in traQ, and a set of pOX38 mutant derivatives carrying a KmR gene insertion in trbA, artA, traQ, or trbB. Analysis of these derivatives showed that insertion of a kan gene at the NsiI site of traQ resulted in transfer deficiency, F-pilus-specific-phage resistance and an absence of detectable F-pilin subunit synthesis. Since the traQ mutants regained a wild-type phenotype when complemented with a traQ+ plasmid clone, we concluded that traQ expression is essential to transfer and F-pilus synthesis. However, pOX38 derivatives carrying kan gene inserts in genes trbA, artA, or trbB retained F-pilus-specific phage sensitivity and transferred at normal levels. Thus, these three gene products may not be essential for F-transfer from Escherichia coli K-12 under standard mating conditions.  相似文献   

11.
茄科雷尔氏菌脂酰-CoA合成酶的功能鉴定   总被引:1,自引:0,他引:1  
【目的】茄科雷尔氏菌是一种常见的农作物致病菌,引起植物青枯病。研究其脂肪酸代谢途径将有助于寻找新的抗菌药物靶点,为防治青枯病害提供新的思路。【方法】利用大肠杆菌FadD序列,进行同源比对发现茄科雷尔氏菌GMI1000中RSc2857(RsFadD)具有较高的相似性,推测其具有脂酰-CoA合成酶活性。采用PCR扩增方法获得RsfadD基因,连入表达载体pBAD24M后互补大肠杆菌fadD突变株,并检测转化子的生长情况。RsfadD与pET-28b连接后,在大肠杆菌BL(DE3)中表达,并利用Ni-NTA纯化获得带有组氨酸标签的RsFadD,体外测定RsFadD的活性。利用同源重组方法,获得RsfadD敲除突变株,分析突变株的生长性状。【结果】RsfadD异体互补大肠杆菌fadD突变株,恢复突变株在以脂肪酸为碳源的基础培养基上生长。体外活性测定RsFadD具有脂酰-CoA合成酶活性,对不同链长的脂肪酸都具有活性,但活性低于大肠杆菌FadD。RsfadD突变株在添加不同链长脂肪酸的基础培养上仅能微弱生长,而在丰富培养基上生长无差异。【结论】茄科雷尔氏菌中RsfadD编码脂酰-CoA合成酶,在脂肪酸利用过程中发挥重要作用。但RsfadD突变株在基础培养基上微弱生长,说明茄科雷尔氏菌基因组中还有其他的脂酰-CoA合成酶基因。以上研究结果为进一步研究茄科雷尔氏菌中脂酰-CoA合成酶以及脂肪酸利用机制奠定了基础。  相似文献   

12.
We recently reported a novel genetic locus located in the sbcB-his region of the chromosomal map of Escherichia coli K-12 which directs the expression of group 6-positive phenotype in Shigella flexneri lipopolysaccharide, presumably due to the transfer of O-acetyl groups onto rhamnose residues of the S. flexneri O-specific polysaccharide (Z. Yao, H. Liu, and M. A. Valvano, J. Bacteriol. 174:7500-7508, 1992). In this study, we identified the genetic region encoding group 6 specificity as part of the rfb gene cluster of E. coli K-12 strain W3110 and established the DNA sequence of most of this cluster. The rfbBDACX block of genes, located in the upstream region of the rfb cluster, was found to be strongly conserved in comparison with the corresponding region in Shigella dysenteriae type 1 and Salmonella enterica. Six other genes, four of which were shown to be essential for the expression of group 6 reactivity in S. flexneri serotypes Y and 4a, were identified downstream of rfbX. One of the remaining two genes showed similarities with rfc (O-antigen polymerase) of S. enterica serovar typhimurium, whereas the other, located in the downstream end of the cluster next to gnd (gluconate-6-phosphate dehydrogenase), had an IS5 insertion. Recently, it has been reported that the IS5 insertion mutation (rfb-50) can be complemented, resulting in the formation of O16-specific polysaccharide by E. coli K-12 (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994). We present immunochemical evidence suggesting that S. flexneri rfb genes also complement the rfb-50 mutation; in the presence of rfb genes of E. coli K-12, S. flexneri isolates express O16-specific polysaccharide which is also acetylated in its rhamnose residues, thereby eliciting group 6 specificity.  相似文献   

13.
Swarming is a form of bacterial translocation that involves cell differentiation and is characterized by a rapid and co-ordinated population migration across solid surfaces. We have isolated a Tn5 mutant of Sinorhizobium meliloti GR4 showing conditional swarming. Swarm cells from the mutant strain QS77 induced on semi-solid minimal medium in response to different signals are hyperflagellated and about twice as long as wild-type cells. Genetic and physiological characterization of the mutant strain indicates that QS77 is altered in a gene encoding a homologue of the FadD protein (long-chain fatty acyl-CoA ligase) of several microorganisms. Interestingly and similar to a less virulent Xanthomonas campestris fadD(rpfB) mutant, QS77 is impaired in establishing an association with its host plant. In trans expression of multicopy fadD restored growth on oleate, control of motility and the symbiotic phenotype of QS77, as well as acyl-CoA synthetase activity of an Escherichia coli fadD mutant. The S. meliloti QS77 strain shows a reduction in nod gene expression as well as a differential regulation of motility genes in response to environmental conditions. These data suggest that, in S. meliloti, fatty acid derivatives may act as intracellular signals controlling motility and symbiotic performance through gene expression.  相似文献   

14.
The cDNA of human medium chain acyl-CoA dehydrogenase (MCADH) was modified by in vitro mutagenesis, and the sequence encoding the mature form of MCADH was introduced into an inducible expression plasmid. We observed synthesis of the protein in Escherichia coli cells transformed with this plasmid with measurable MCADH enzyme activity in cell extracts. Glutamic acid 376, which has been proposed by Powell and Thorpe (Powell, P. J., and Thorpe, J. (1988) Biochemistry 27, 8022-8028) as an essential residue and the proton-abstracting base at the active site of the enzyme, was mutated to glutamine. After expression in bacteria of this plasmid, the corresponding extracts show no detectable MCADH activity, although mutant MCADH-protein production was detected by protein immunoblots. The mature enzyme and the Gln376 mutant were purified to apparent homogeneity. The wild-type enzyme is a yellow protein due to the content of stoichiometric FAD and had a specific activity which is 50% of MCADH purified from pig kidney. The Gln376 mutant is devoid of activity (less than 0.02% that of wild type, expressed enzyme) and is green because of bound CoA persulfide. Properties of the mutant enzyme suggest that the Glu376----Gln change specifically affects substrate binding. These results prove that Glu376 plays an important role in the initial step of dehydrogenation catalysis.  相似文献   

15.
16.
17.
Bacteroides ruminicola is one of several species of anaerobes that are able to reductively carboxylate isovalerate (or isovaleryl-coenzyme A) to synthesize alpha-ketoisocaproate and thus leucine. When isovalerate was not supplied to growing B. ruminicola cultures, carbon from [U-14C]glucose was used for the synthesis of leucine and other cellular amino acids. When unlabeled isovalerate was available, however, utilization of [U-14C]glucose or [2-14C]acetate for leucine synthesis was markedly and specifically reduced. Enzyme assays indicated that the key enzyme of the common isopropylmalate (IPM) pathway for leucine biosynthesis, IPM synthase, was present in B. ruminicola cell extracts. The specific activity of IPM synthase was reduced when leucine was added to the growth medium but was increased by the addition of isoleucine plus valine, whereas the addition of isovalerate had little or no effect. The activity of B. ruminicola IPM synthase was strongly inhibited by leucine, the end product of the pathway. It seems unlikely that the moderate inhibition of the enzyme by isovalerate adequately explains the regulation of carbon flow by isovalerate in growing cultures. Bacteroides fragilis apparently also uses either the isovalerate carboxylation or the IPM pathway for leucine biosynthesis. Furthermore, both of these organisms synthesize isoleucine and phenylalanine, using carbon from 2-methylbutyrate and phenylacetate, respectively, in preference to synthesis of these amino acids de novo from glucose. Thus, it appears that these organisms have the ability to regulate alternative pathways for the biosynthesis of certain amino acids and that pathways involving reductive carboxylations are likely to be favored in their natural habitats.  相似文献   

18.
Bacteroides ruminicola is one of several species of anaerobes that are able to reductively carboxylate isovalerate (or isovaleryl-coenzyme A) to synthesize alpha-ketoisocaproate and thus leucine. When isovalerate was not supplied to growing B. ruminicola cultures, carbon from [U-14C]glucose was used for the synthesis of leucine and other cellular amino acids. When unlabeled isovalerate was available, however, utilization of [U-14C]glucose or [2-14C]acetate for leucine synthesis was markedly and specifically reduced. Enzyme assays indicated that the key enzyme of the common isopropylmalate (IPM) pathway for leucine biosynthesis, IPM synthase, was present in B. ruminicola cell extracts. The specific activity of IPM synthase was reduced when leucine was added to the growth medium but was increased by the addition of isoleucine plus valine, whereas the addition of isovalerate had little or no effect. The activity of B. ruminicola IPM synthase was strongly inhibited by leucine, the end product of the pathway. It seems unlikely that the moderate inhibition of the enzyme by isovalerate adequately explains the regulation of carbon flow by isovalerate in growing cultures. Bacteroides fragilis apparently also uses either the isovalerate carboxylation or the IPM pathway for leucine biosynthesis. Furthermore, both of these organisms synthesize isoleucine and phenylalanine, using carbon from 2-methylbutyrate and phenylacetate, respectively, in preference to synthesis of these amino acids de novo from glucose. Thus, it appears that these organisms have the ability to regulate alternative pathways for the biosynthesis of certain amino acids and that pathways involving reductive carboxylations are likely to be favored in their natural habitats.  相似文献   

19.
Mycolic acids are major and specific long-chain fatty acids of the cell envelope of several important human pathogens such as Mycobacterium tuberculosis, M. leprae, and Corynebacterium diphtheriae. Their biosynthesis is essential for mycobacterial growth and represents an attractive target for developing new antituberculous drugs. We have previously shown that the pks13 gene encodes condensase, the enzyme that performs the final condensation step of mycolic acid biosynthesis and is flanked by two genes, fadD32 and accD4. To determine the functions of the gene products we generated two mutants of C. glutamicum with an insertion/deletion within either fadD32 or accD4. The two mutant strains were deficient in mycolic acid production and exhibited the colony morphology that typifies the mycolate-less mutants of corynebacteria. Application of multiple analytical approaches to the analysis of the mutants demonstrated the accumulation of a tetradecylmalonic acid in the DeltafadD32::km mutant and its absence from the DeltaaccD4::km strain. The parental corynebacterial phenotype was restored upon the transfer of the wild-type fadD32 and accD4 genes in the mutants. These data demonstrated that both FadD32 and AccD4-containing acyl-CoA carboxylase are required for the production of mycolic acids. They also prove that the proteins catalyze, respectively, the activation of one fatty acid substrate and the carboxylation of the other substrate, solving the long-debated question of the mechanism involved in the condensation reaction. We used comparative genomics and applied a combination of molecular biology and proteomic technologies to the analysis of proteins that co-immunoprecipitated with AccD4. This resulted in the identification of AccA3 and AccD5 as subunits of the acyl-CoA carboxylase. Finally, we used conditionally replicative plasmids to show that both the fadD32 and accD4 genes are essential for the survival of M. smegmatis. Thus, in addition to Pks13, FadD32 and AccD4 are promising targets for the development of new antimicrobial drugs against pathogenic species of mycobacteria and related microorganisms.  相似文献   

20.
Helicobacter pylori mutagenesis by mariner in vitro transposition   总被引:3,自引:0,他引:3  
We have developed a method for generating transposon insertion mutants using mariner in vitro mutagenesis. The gene of interest was PCR-amplified and cloned. A kanamycin-marked mariner transposon was randomly inserted into the purified plasmid in an in vitro transposition reaction. After repair and propagation in Escherichia coli, purified mutagenized plasmid was introduced into Helicobacter pylori by natural transformation. Transformants were selected by plating on kanamycin. Mutants were predominantly the result of double homologous recombination, and multiple mutants (with insertions in distinct positions) were often obtained. The site of insertion was determined by PCR or sequencing. We have made mutations in known or potential virulence genes, including ureA, hopZ, and vacA, using kanamycin- and kanamycin/lacZ-marked transposons. Colonies carrying a kanamycin/lacZ transposon appeared blue on medium containing the chromogenic agent X-gal, allowing discrimination of mutant and wild-type H. pylori in mixed competition experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号