首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Y Huang  J Mak  Q Cao  Z Li  M A Wainberg    L Kleiman 《Journal of virology》1994,68(12):7676-7683
Human immunodeficiency virus (HIV) particles produced in COS-7 cells transfected with HIV type 1 (HIV-1) proviral DNA contain 8 molecules of tRNA(3Lys) per 2 molecules of genomic RNA and 12 molecules of tRNA1,2Lys per 2 molecules of genomic RNA. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a human tRNA3Lys gene, there is a large increase in the amount of cytoplasmic tRNA3Lys per microgram of total cellular RNA, and the tRNA3Lys content in the virus increases from 8 to 17 molecules per 2 molecules of genomic RNA. However, the total number of tRNALys molecules per 2 molecules of genomic RNA remains constant at 20; i.e., the viral tRNA1,2Lys content decreases from 12 to 3 molecules per 2 molecules of genomic RNA. All detectable tRNA3Lys is aminoacylated in the cytoplasm of infected cells and deacylated in the virus. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a mutant amber suppressor tRNA3Lys gene (in which the anticodon is changed from TTT to CTA), there is also a large increase in the relative concentration of cytoplasmic tRNA3Lys, and the tRNA3Lys content in the virus increases from 8 to 15 molecules per 2 molecules of genomic RNA, with a decrease in viral tRNA1,2Lys from 12 to 5 molecules per 2 molecules of genomic RNA. Thus, the total number of molecules of tRNALys in the virion remains at 20. The alteration of the anticodon has little effect on the viral packaging of this mutant tRNA in spite of the fact that it no longer contains the modified base mcm 5s2U at position 34, and its ability to be aminoacylated is significantly impaired compared with that of wild-type tRNA3Lys. Viral particles which have incorporated either excess wild-type tRNA3Lys or mutant suppressor tRNA3Lys show no differences in viral infectivity compared with wild-type HIV-1.  相似文献   

7.
8.
The lysine isoacceptor tRNAs differ in two aspects from the majority of the other mammalian tRNA species: they do not contain ribosylthymine (T) in loop IV, and a 'new' lysine tRNA, which is practically absent in non-dividing tissue, appears at elevated levels in proliferating cells. We have therefore purified the three major isoaccepting lysine tRNAs from rabbit liver and the 'new' lysine tRNA isolated from SV40-transformed mouse fibroblasts, and determined their nucleotide sequences. Our basic findings are as follows. a) The three major lysine tRNAs (species 1, 2 and 3) from rabbit liver contain 2'-O-methylribosylthymine (Tm) in place of T. tRNA1Lys and tRNA2Lys differ only by a single base pair in the middle of the anticodon stem; the anticodon sequence C-U-U is followed by N-threonyl-adenosine (t6A). TRNA3Lys has the anticodon S-U-U and contains two highly modified thionucleosides, S (shown to be 2-thio-5-carboxymethyl-uridine methyl ester) and a further modified derivative of t6 A (2-methyl-thio-N6-threonyl-adenosine) on the 3' side of the anticodon. tRNA3Lys differs in 14 and 16 positions, respectively, from the other two isoacceptors. b) Protein synthesis in vitro, using synthetic polynucleotides of defined sequence, showed that tRNA2Lys with anticodon C-U-U recognized A-A-G only, whereas tRNA3Lys, which contains thio-nucleotides in and next to the anticodon, decodes both lysine codons A-A-G and A-A-A, but with a preference for A-A-A. In a globin-mRNA-translating cell-free system from ascites cells, both lysine tRNAs donated lysine into globin. The rate and extent of lysine incorporation, however, was higher with tRNA2Lys than with tRNA3Lys, in agreement with the fact that alpha-globin and beta-globin mRNAs contain more A-A-G than A-A-A- codons for lysine. c) A comparison of the nucleotide sequences of lysine tRNA species 1, 2 and 3 from rabbit liver, with that of the 'new' tRNA4Lys from transformed and rapidly dividing cells showed that this tRNA is not the product of a new gene or group of genes, but is an undermodified tRNA derived exclusively from tRNA2Lys. Of the two dihydrouridines present in tRNA2Lys, one is found as U in tRNA4Lys; the purine next to the anticodon is as yet unidentified but is known not be t6 A. In addition we have found U, T and psi besides Tm as the first nucleoside in loop IV.  相似文献   

9.
10.
11.
Unusual anticodon loop structure found in E.coli lysine tRNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
Although both tRNA(Lys) and tRNA(Glu) of E. coli possess similar anticodon loop sequences, with the same hypermodified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the first position of their anticodons, the anticodon loop structures of these two tRNAs containing the modified nucleoside appear to be quite different as judged from the following observations. (1) The CD band derived from the mnm5s2U residue is negative for tRNA(Glu), but positive for tRNA(Lys). (2) The mnm5s2U monomer itself and the mnm5s2U-containing anticodon loop fragment of tRNA(Lys) show the same negative CD bands as that of tRNA(Glu). (3) The positive CD band of tRNA(Lys) changes to negative when the temperature is raised. (4) The reactivity of the mnm5s2U residue toward H2O2 is much lower for tRNA(Lys) than for tRNA(Glu). These features suggest that tRNA(Lys) has an unusual anticodon loop structure, in which the mnm5s2U residue takes a different conformation from that of tRNA(Glu); whereas the mnm5s2U base of tRNA(Glu) has no direct bonding with other bases and is accessible to a solvent, that of tRNA(Lys) exists as if in some way buried in its anticodon loop. The limited hydrolysis of both tRNAs by various RNases suggests that some differences exist in the higher order structures of tRNA(Lys) and tRNA(Glu). The influence of the unusual anticodon loop structure observed for tRNA(Lys) on its function in the translational process is also discussed.  相似文献   

12.
Anticodon nuclease is a bacterial restriction enzyme directed against tRNA(Lys). We report that anticodon nuclease also cleaves mammalian tRNA(Lys) molecules, with preference and site specificity shown towards the natural substrate. Expression of the anticodon nuclease core polypeptide PrrC in HeLa cells from a recombinant vaccinia virus elicited cleavage of intracellular tRNA(Lys),3. The data justify an inquiry into the possible application of anticodon nuclease as an inhibitor of tRNA(Lys),3-primed HIV replication. They also indicate that the anticodon region of tRNA(Lys) is a substrate recognition site and suggest that PrrC harbors the enzymatic activity.  相似文献   

13.
14.
The structure of the human tRNA(Lys3) anticodon stem and loop domain (ASL(Lys3)) provides evidence of the physicochemical contributions of N6-threonylcarbamoyladenosine (t(6)A(37)) to tRNA(Lys3) functions. The t(6)A(37)-modified anticodon stem and loop domain of tRNA(Lys3)(UUU) (ASL(Lys3)(UUU)- t(6)A(37)) with a UUU anticodon is bound by the appropriately programmed ribosomes, but the unmodified ASL(Lys3)(UUU) is not [Yarian, C., Marszalek, M., Sochacka, E., Malkiewicz, A., Guenther, R., Miskiewicz, A., and Agris, P. F., Biochemistry 39, 13390-13395]. The structure, determined to an average rmsd of 1.57 +/- 0.33 A (relative to the mean structure) by NMR spectroscopy and restrained molecular dynamics, is the first reported of an RNA in which a naturally occurring hypermodified nucleoside was introduced by automated chemical synthesis. The ASL(Lys3)(UUU)-t(6)A(37) loop is significantly different than that of the unmodified ASL(Lys3)(UUU), although the five canonical base pairs of both ASL(Lys3)(UUU) stems are in the standard A-form of helical RNA. t(6)A(37), 3'-adjacent to the anticodon, adopts the form of a tricyclic nucleoside with an intraresidue H-bond and enhances base stacking on the 3'-side of the anticodon loop. Critically important to ribosome binding, incorporation of the modification negates formation of an intraloop U(33).A(37) base pair that is observed in the unmodified ASL(Lys3)(UUU). The anticodon wobble position U(34) nucleobase in ASL(Lys3)(UUU)-t(6)A(37) is significantly displaced from its position in the unmodified ASL and directed away from the codon-binding face of the loop resulting in only two anticodon bases for codon binding. This conformation is one explanation for ASL(Lys3)(UUU) tendency to prematurely terminate translation and -1 frame shift. At the pH 5.6 conditions of our structure determination, A(38) is protonated and positively charged in ASL(Lys3)(UUU)-t(6)A(37) and the unmodified ASL(Lys3)(UUU). The ionized carboxylic acid moiety of t(6)A(37) possibly neutralizes the positive charge of A(+)(38). The protonated A(+)(38) can base pair with C(32), but t(6)A(37) may weaken the interaction through steric interference. From these results, we conclude that ribosome binding cannot simply be an induced fit of the anticodon stem and loop, otherwise the unmodified ASL(Lys3)(UUU) would bind as well as ASL(Lys3)(UUU)-t(6)A(37). t(6)A(37) and other position 37 modifications produce the open, structured loop required for ribosomal binding.  相似文献   

15.
16.
17.
tRNA recognition site of Escherichia coli methionyl-tRNA synthetase   总被引:5,自引:0,他引:5  
O Leon  L H Schulman 《Biochemistry》1987,26(17):5416-5422
We have previously shown that anticodon bases are essential for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase (MetRS) [Schulman, L. H., & Pelka, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6755-6759] and that the enzyme tightly binds to C34 at the wobble position of E. coli initiator methionine tRNA (tRNAfMet) [Pelka, H., & Schulman, L. H. (1986) Biochemistry 25, 4450-4456]. We have also previously demonstrated that an affinity labeling derivative of tRNAfMet can be quantitatively cross-linked to the tRNA binding site of MetRS [Valenzuela, D., & Schulman, L. H. (1986) Biochemistry 25, 4555-4561]. Here, we have determined the site in MetRS which is cross-linked to the anticodon of tRNAfMet, as well as the location of four additional cross-links. Only a single peptide, containing Lys465, is covalently coupled to C34, indicating that the recognition site for the anticodon is close to this sequence in the three-dimensional structure of MetRS. The D loop at one corner of the tRNA molecule is cross-linked to three peptides, containing Lys402, Lys439, and Lys596. The 5' terminus of the tRNA is cross-linked to Lys640, near the carboxy terminus of the enzyme. Since the 3' end of tRNAfMet is positioned close to the active site in the N-terminal domain [Hountondji, C., Blanquet, S., & Lederer, F. (1985) Biochemistry 24, 1175-1180], this result indicates that the carboxy ends of the two polypeptide chains of native dimeric MetRS are folded back toward the N-terminal domain of each subunit.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号