首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PR-10 proteins (pathogensis-related), ubiquitous within the plant kingdom, are usually encoded by multigene families. To date we have identified 10 homologous pr-10 genes in a yellow lupine cDNA library. Here, the structure and expression of two newly identified yellow lupine pr-10 genes (LlYpr10-2b and LlYpr10-2f) are presented. Many potential regulatory sites were found in both gene promoters including common ones as well as those unique for each gene. However, promoter deletion analysis in transgenic tobacco plants revealed similar patterns of reporter gene (gus) expression. Shortened fragments of both gene promoters studied caused high GUS activity in leaves (along vascular bundles), stamen stigma, anthers and pollen grains. When conjugated with longer LlYpr-10.2 promoter fragments, GUS was additionally present in petal edges. Only a long fragment of the LlYpr10-2b gene promoter caused GUS expression in the stem. In yellow lupine the pr-10.2 genes are present in all studied organs, but their level of expression depends on the stage of development and is affected by wounding, oxidative stress and salicylic acid treatment. Silencing of the Llpr-10.2b gene in 4-week-old yellow lupine plants did not lead to any visible symptoms, which suggests that the function of the silenced gene is supplemented by its close homologues, still present in the studied plants.  相似文献   

2.
Cell cycle progression in eukaryotes is controlled by complexes of p34 protein kinases and cyclins. For the first time in plants, we have established the sequence of four yellow lupine mitotic cyclin B1 genes. Their coding regions and expression pattern were also characterised recently. Structure of all the four lupine genes is similar: they consist of nine exons and eight introns, analogously located, except Luplu;CycB1;3 lacking 7th intron. Analysis of 5'-regulatory sequences of two of them showed that both comprise M-specific activators (MSA), common to plant genes induced in late G2 and early M. Putative repressor binding sites CDE/CHR found in animal G2-specific promoters can also be detected in lupine genes. Controlling region of Luplu;CycB1;4 gene that is highly activated by IAA, contains up to 7 auxin response elements, while insensible to IAA Luplu;CycB1;4 gene have no such motifs. Further studies should be undertaken to determine precisely the functions of putative regulatory elements in the expression of lupine mitotic cyclins.  相似文献   

3.
4.
To find out potent inhibitors of S-adenosylhomocysteine hydrolase (SAHase), several deazaadenosine analogues synthesized in this laboratory and some naturally occurring nucleoside analogues were examined with SAHases from yellow lupin seeds and rabbit liver. Neplanocin A, an antibiotic, inhibited both enzymes more potently than aristeromycin which was also an antibiotic and known as one of the most potent inhibitors of SAHase. The 3-deazaadenine derivatives (2'-deoxy, arabinosyl, xylosyl) inactivated lupin SAHase as potent as 3-deazaadenosine. Whereas, inhibitory activities of 1-deazaadenosine, its derivatives, and 7-deazaadenosine (tubercidin) were very weak.  相似文献   

5.
6.
7.
Immunochemical properties of elongation factors 1 of plant origin   总被引:2,自引:0,他引:2  
Elongation factors 1 (EF-1) have been isolated from different plants: wheat, yellow lupine, blue lupine, Chinese cabbage and Norway maple. Antibodies for EF-1 from yellow lupine have been obtained in rabbits; antibodies for wheat EF-1 were elicited in mice. The immunological properties of EF-1 were assayed by the following methods: western blotting, double immunodiffusion and rocket immunoelectrophoresis. Our results suggest that one antigenic site is similar for all plant elongation binding factors tested. This epitope probably overlaps the centre of biological activity of EF-1, as was shown for wheat EF-1. The hypothesis concerning the potential presence of plant EF-1 as a subunit of turnip yellow mosaic virus RNA replicase (similar to prokaryotic EF-Tu in the Q beta RNA replicase system) has also been tested using immunotechniques as well as tests of biological activity, but has not been confirmed.  相似文献   

8.
The effects of salicylic acid (SA) on the rate of respiration and the activity of cyanide-resistant sensitive to salicylhydroxamic acid oxidation pathway in detached etiolated cotyledons of yellow lupine (Lupinus luteus L.) and mitochondria isolated from these cotyledons were studied. Cotyledon treatment with 1 mM SA for 12 h increased the rate of oxygen uptake predominantly due to the activation of cyanide-resistant respiration (CRR) and alternative pathway of mitochondrial oxidation. It was established that the lupine genome encodes at least two isoforms of alternative oxidase (AO), LuAOX1 and LuAOX2, with the mol wt of about 35 kD. These proteins are always present in the mitochondria of etiolated lupine cotyledons, but their level increased rapidly after cotyledon treatment with SA, probably by increasing the mRNA content of the corresponding genes. SA-induced expression of Aox genes was correlated with the activation of CRR and an increase in the maximal activity (capacity) of AO in both detached yellow lupine cotyledons and mitochondria isolated from them.  相似文献   

9.
10.
Storage lipid and protein breakdown in germinating seeds of yellow (Lupinus luteus L.), white (L. albus L.), and Andean lupine (L. mutabilis Sweet) and regulatory function of sucrose were investigated. Less oil bodies were detected in organs of yellow lupine seeds, whereas the highest content of oil bodies was noticed in the Andean lupine seeds. Mature, air-dried yellow, white and Andean lupine seeds do not contain starch. Starch grains appear the earliest in white lupine seeds during imbibition. Sucrose deficiency in tissues enhances breakdown of storage lipid, protein and temporary starch in cotyledons. In sucrose starved embryo axes of all investigated lupine species, an increased level of vacuolization was noted. Interconnections between catabolism of storage protein and storage lipid in germinating lupine seeds were identified by applying 14C-acetate. To assess the importance of key processes in storage lipid breakdown NaF (inhibitor of glycolysis and gluconeogenesis), KCN, NaN3 and SHAM (inhibitors of mitochondrial electron transport chain) and MSO (inhibitor of glutamine synthetase) were used. Radioactivity coming from 14C-acetate was released as 14CO2 but mostly was incorporated into ethanol-soluble fraction of embryo axes and cotyledons. Respiratory inhibitors caused a significant decrease in 14CO2 and ethanol fractions in all three lupine species studied. MSO stimulated release of 14CO2 and radioactivity of ethanol fractions in yellow lupine organs fed with sucrose, but in Andean lupine MSO enhanced the production of 14CO2 and radioactivity of ethanol fractions both in organs fed and not fed with sucrose. Different strategies of storage compound breakdown are proposed, depending on relative proportion in storage protein and lipid content in lupine seeds.  相似文献   

11.
We examined changes in profiles of isoflavonoids in roots of lupine (Lupinus luteus L. cv. Juno) seedlings in response to treatment with two heavy metals: cadmium (at 10 mg/l) and lead (at 150 mg/l). Overall, 21 flavonoid conjugates were identified in root extracts, some of them with up to six positional isomers. The total amount of all isoflavonoids increased by about 15 % in cadmium-treated plants and by 46 % in lead-treated ones. Heavy metals markedly increased the content of two compounds: 2'-hydroxygenistein glucoside and 2'-hydroxygenistein 7-O-glucoside malonylated. Possible functions of the identified isoflavonoids in yellow lupine exposed to heavy metal stress are discussed.  相似文献   

12.
Phylogenetic relationships among prokaryotic and eukaryotic catalases   总被引:13,自引:1,他引:12  
Seventy-four catalase protein sequences, including 29 bacterial, 8 fungal, 7 animal, and 30 plant sequences, were compiled, and 70 were used for phylogenetic reconstruction. The core of the resulting tree revealed unique, separate groups of plant and animal catalases, two groups of fungal catalases, and three groups of bacterial catalases. The only overlap of kingdoms occurred within one branch and involved fungal and bacterial large-subunit enzymes. The other fungal branch was closely linked to the group of animal enzymes. Group I bacterial catalases were more closely related to the plant enzymes and contained such diverse taxa as the Gram-positive Listeria seeligeri, Deinocococcus radiodurans, and gamma-proteobacteria. Group III bacterial sequences were more closely related to fungal and animal sequences and included enzymes from a broad range of bacteria including high- and low-GC Gram positives, proteobacteria, and a bacteroides species. Group II was composed of large-subunit catalases from diverse sources including Gram positives (low-GC Bacilli and high-GC Mycobacteria), proteobacteria, and species of the filamentous fungus Aspergillus. These data can be interpreted in terms of two gene duplication events that produced a minimum of three catalase gene family members that subsequently evolved in response to environmental demands. Horizontal gene transfer may have been responsible for the group II mixture of bacterial and fungal large-subunit catalases.   相似文献   

13.
Acrolein is a ubiquitous reactive aldehyde which is formed as a product of lipid peroxidation in biological systems. In this present study, we screened the complete set of viable deletion strains in Saccharomyces cerevisiae for sensitivity to acrolein to identify cell functions involved in resistance to reactive aldehydes. We identified 128 mutants whose gene products are localized throughout the cell. Acrolein-sensitive mutants were distributed among most major biological processes but particularly affected gene expression, metabolism, and cellular signaling. Surprisingly, the screen did not identify any antioxidants or similar stress-protective molecules, indicating that acrolein toxicity may not be mediated via reactive oxygen species. Most strikingly, a mutant lacking an old yellow enzyme (OYE2) was identified as being acrolein sensitive. Old yellow enzymes are known to reduce α,β-unsaturated carbonyl compounds in vitro, but their physiological roles have remained uncertain. We show that mutants lacking OYE2, but not OYE3, are sensitive to acrolein, and overexpression of both isoenzymes increases acrolein tolerance. Our data indicate that OYE2 is required for basal levels of tolerance, whereas OYE3 expression is particularly induced following acrolein stress. Despite the range of α,β-unsaturated carbonyl compounds that have been identified as substrates of old yellow enzymes in vitro, we show that old yellow enzymes specifically mediate resistance to small α,β-unsaturated carbonyl compounds, such as acrolein, in vivo.  相似文献   

14.
A cDNA clone encoding the entire transacylase (E2b) precursor of the bovine branched-chain alpha-keto acid dehydrogenase complex has been constructed from two overlapping incomplete cDNA clones which were isolated from a lambda ZAP library prepared from bovine liver poly(A)+ RNA. Nucleotide sequencing indicates that this bovine E2b cDNA insert (bE2-11) is 2701 base pairs in length with an open reading frame of 1446 base pairs. The bE2-11 cDNA insert encodes a leader peptide of 61 residues and a mature E2b polypeptide of 421 amino acid residues with a calculated monomeric molecular mass of 46,518 daltons. The molecular mass of the native E2b component isolated from bovine liver is 1,110,000 daltons as determined by sedimentation equilibrium. This value establishes the 24-subunit octahedral model for the quaternary structure of bovine E2b. The amino-terminal sequences of two tryptic fragments (A and B) of the E2b protein have been determined. Fragment A comprises residues 175 to 421 of the E2b protein and is the inner E2 core domain which contains the transacylase active site. Fragment B, produced by further tryptic cleavage of fragment, comprises residues 205 to 421, but does not have transacylase activity. Both fragments A and B confer the highly assembled 24-mer structure. The primary structure of the inner E2 core domain of bovine E2b (fragment A) is very similar to those of three other E2 proteins (human E2p, Escherichia coli E2p, and E. coli E2k). These similarities suggest that these E2 proteins are structurally and evolutionarily related.  相似文献   

15.
We report here mutations affecting various aspects of liver development and function identified by multiple assays in a systematic mutagenesis screen in Medaka. The 22 identified recessive mutations assigned to 19 complementation groups fell into five phenotypic groups. Group 1, showing defective liver morphogenesis, comprises mutations in four genes, which may be involved in the regulation of growth or patterning of the gut endoderm. Group 2 comprises mutations in three genes that affect the laterality of the liver; in kendama mutants of this group, the laterality of the heart and liver is uncoupled and randomized. Group 3 includes mutations in three genes altering bile color, indicative of defects in hemoglobin-bilirubin metabolism and globin synthesis. Group 4 consists of mutations in three genes, characterized by a decrease in the accumulation of fluorescent metabolite of a phospholipase A(2) substrate, PED6, in the gall bladder. Lipid metabolism or the transport of lipid metabolites may be affected by these mutations. Mutations in Groups 3 and 4 may provide animal models for relevant human diseases. Group 5 mutations in six genes affect the formation of endoderm, endodermal rods and hepatic bud from which the liver develops. These Medaka mutations, identified by morphological and metabolite marker screens, should provide clues to understanding molecular mechanisms underlying formation of a functional liver.  相似文献   

16.
Germination is the first step of plant growth in plant life cycle. An embryonic radicle protruding the seed coat is the first part of plant which has direct contact with external environment including salt-affected soil. In embryo axes, mitochondria are the main energy producer. To understand better salinity impact on mitochondria functioning, this study was focused on the effect of NaCl stress onto mitochondria proteome. Mitochondria were isolated from yellow lupine (Lupine luteus L. ‘Mister’) embryo axes cultured in vitro for 12 h with 250 and 500 mM NaCl. Two-dimensional gel electrophoresis of mitochondrial proteins isolated from NaCl-treated axes demonstrated significant changes in proteins abundances as a response to salinity treatment. Twenty-one spots showing significant changes in protein expression profiles both under 250 and 500 mM NaCl treatment were selected for tandem mass spectrometry identification. This approach revealed proteins associated with different metabolic processes that represent enzymes of tricarboxylic acid cycle, mitochondrial electron transport chain, enzymes and proteins involved in mitochondria biogenesis and stresses response. Among proteins involved in mitochondria biogenesis, mitochondrial import inner membrane translocase, subunit Tim17/22, mitochondrial-processing peptidase subunit alpha-1, mitochondrial elongation factor Tu and chaperonins CPN60 were revealed. Finally, formate dehydrogenase 1 was found to accumulate in lupine embryo axes mitochondria under salinity. The functions of identified proteins are discussed in relation to salinity stress response, including salinity-induced PCD.  相似文献   

17.
The NS3 ATPase/helicase was isolated and characterized from three different infectious clones of hepatitis C virus (HCV). One helicase was from a genotype that normally responds to therapy (Hel-2a), and the other two were from more resistant genotypes, 1a (Hel-1a) and 1b (Hel-1b). Although the differences among these helicases are generally minor, all three enzymes have distinct properties. Hel-1a is less selective for nucleoside triphosphates, Hel-1b hydrolyzes nucleoside triphosphates less rapidly, and Hel-2a unwinds DNA more rapidly and binds DNA more tightly than the other two enzymes. Unlike related proteins, different nucleic acid sequences stimulate ATP hydrolysis by HCV helicase at different maximum rates and with different apparent efficiencies. This nucleic acid stimulation profile is conserved among the enzymes, but it does not result entirely from differential DNA-binding affinities. Although the amino acid sequences of the three proteins differ by up to 15%, one variant amino acid that is critical for helicase action was identified. NS3 residue 450 is a threonine in Hel-1a and Hel-1b and is an isoleucine in Hel-2a. A mutant Hel-1a with an isoleucine substituted for threonine 450 unwinds DNA more rapidly and binds DNA more tightly than the parent protein.  相似文献   

18.
The ability of Plasmodium falciparum parasitized RBC (pRBC) to form rosettes with normal RBC is linked to the virulence of the parasite and RBC polymorphisms that weaken rosetting confer protection against severe malaria. The adhesin PfEMP1 mediates the binding and specific antibodies prevent sequestration in the micro-vasculature, as seen in animal models. Here we demonstrate that epitopes targeted by rosette disrupting antibodies converge in the loop of subdomain 3 (SD3) which connects the h6 and h7 α-helices of PfEMP1-DBL1α. Both monoclonal antibodies and polyclonal IgG, that bound to epitopes in the SD3-loop, stained the surface of pRBC, disrupted rosettes and blocked direct binding of recombinant NTS-DBL1α to RBC. Depletion of polyclonal IgG raised to NTS-DBL1α on a SD3 loop-peptide removed the anti-rosetting activity. Immunizations with recombinant subdomain 1 (SD1), subdomain 2 (SD2) or SD3 all generated antibodies reacting with the pRBC-surface but only the sera of animals immunized with SD3 disrupted rosettes. SD3-sequences were found to segregate phylogenetically into two groups (A/B). Group A included rosetting sequences that were associated with two cysteine-residues present in the SD2-domain while group B included those with three or more cysteines. Our results suggest that the SD3 loop of PfEMP1-DBL1α is an important target of anti-rosetting activity, clarifying the molecular basis of the development of variant-specific rosette disrupting antibodies.  相似文献   

19.
20.
We examined the genetic structure and symbiotic characteristics of Bradyrhizobium isolates recovered from four legume species (Lupinus albus [white lupine], Lupinus angustifolius [blue lupine], Ornithopus compressus [yellow serradella], and Macroptilium atropurpureum [sirato]) grown in an Oregon soil. We established that multilocus enzyme electrophoresis (MLEE) can provide insights into the genetic relatedness among Bradyrhizobium strains by showing a positive correlation (r2 = ≥0.90) between the relatedness of Bradyrhizobium japonicum strains determined by MLEE at 13 enzyme loci and that determined by other workers using either DNA-DNA hybridization or DNA sequence divergence estimates. MLEE identified 17 electrophoretic types (ETs) among 95 Bradyrhizobium isolates recovered from the four hosts. Although the overall genetic diversity among the ETs (H = 0.69) is one of the largest measured to date in a local population of any soilborne bacterial species, there was no evidence of multilocus structure (linkage disequilibrium) within the population. The majority of the isolates (73%) were represented by two closely related ETs (2 and 3) which dominated the root nodules of white lupine, serradella, and siratro. In contrast, ET1 dominated nodules of blue lupine. Although representative isolates from all of the 17 ETs nodulated siratro, white lupine, blue lupine, and big trefoil (Lotus pedunculatus), they were either completely ineffective or poorly effective at fixing nitrogen on these hosts. Despite the widespread use of serradella as a surrogate host for lupine-nodulating bradyrhizobia, 7 of the 17 ETs did not nodulate this host, and the remaining 10 ETs were ineffective at fixing nitrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号