首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have determined the prototype sequence of the DNA which is eliminated in the course of chromatin diminution in Ascaris suum. This DNA which is virtually absent from somatic cells but retained in the germ line consists predominantly of highly repetitive sequences which are variants of an AT rich 123 base pair repeat unit. Both major and minor variants have been sequenced. The overall structure of this germ line limited DNA corresponds to the segmental organization characteristic of satellite DNAs. Possible correlations between the mechanism of chromatin diminution and some properties of the satellite sequence are discussed.  相似文献   

2.
Guy Drouin 《Génome》2006,49(6):657-665
Chromatin diminution, i.e., the loss of selected chromosomal regions during the differentiation of early embryonic cells into somatic cells, has been described in taxa as varied as ciliates, copepods, insects, nematodes, and hagfish. The nature of the eliminated DNA has been extensively studied in ciliate, nematode, and hagfish species. However, the small size of copepods, which makes it difficult to obtain enough DNA from early embryonic cells for cloning and sequencing, has limited such studies. Here, to identify the sequences eliminated from the somatic cells of a copepod species that undergoes chromatin diminution, we randomly amplified DNA fragments from germ line and somatic line cells of Mesocyclops edax, a freshwater cyclopoid copepod. Of 47 randomly amplified germ line clones, 45 (96%) contained short, tandemly repeated sequences composed of either 2 bp CA-repeats, 8 bp CAAATAGA-repeats, or 9 bp CAAATTAAA-repeats. In contrast, of 83 randomly amplified somatic line clones, only 47 (57%) contained such short, tandemly repeated sequences. As previously observed in some nematode species, our results therefore show that there is partial elimination of chromosomal regions containing (CAAATAGA and CAAATTAAA) repeated sequences during the chromatin diminution observed in the somatic cells of M. edax. We speculate that chromatin diminution might have evolved repeatedly by recruitment of RNAi-related mechanisms to eliminate nonfunctional tandemly repeated DNA sequences from the somatic genome of some species.  相似文献   

3.
A clone containing a middle repetitive element next to satellite DNA has been isolated from a germ line genomic library of the chromatin eliminating nematode Ascaris lumbricoides var. suum. The structure of this element has been elucidated by comparison of several clones containing the element in different environments. It is flanked by 256-bp-long terminal repeats (LTRs) and has an internal region of approximately 7 kb. The nucleotide sequences of both the 5' and the 3' LTRs have been determined. The element has a strong structural similarity with retroviral proviruses and related mobile elements. It was therefore named 'Tas', for transposon-like element of Ascaris. Approximately 50 Tas copies are dispersed over approximately 20 different chromosomal sites. Their genomic distribution varies between individuals, indicating that Tas elements are mobile in the Ascaris genome. Two variant forms, Tas-1 and Tas-2, present in a ratio of approximately 2 to 1 in the germ line genome, have been characterized. They differ not only in their restriction pattern, but also in their elimination behaviour. While only about one-fourth of the Tas-1 elements are expelled from the somatic cell lineage, all Tas-2 copies are specifically eliminated and are thus confined to the germ line cells. We have demonstrated that a cloned representative of Tas-1 elements is expelled concomitantly with its flanking DNA sequences during the chromatin elimination process.  相似文献   

4.
The process of chromatin diminution in Parascaris and Ascaris is a developmentally controlled genome rearrangement, which results in quantitative and qualitative differences in DNA content between germ line and somatic cells. Chromatin diminution involves chromosomal breakage, new telomere formation and DNA degradation. The programmed elimination of chromatin in presomatic cells might serve as an alternative way of gene regulation. We put forward a new hypothesis of how an ancient partial genome duplication and chromatin diminution may have served to maintain the genetic balance in somatic cells and simultaneously endowed the germ line cells with a selective advantage.  相似文献   

5.
F Müller  C Wicky  A Spicher  H Tobler 《Cell》1991,67(4):815-822
During the process of chromatin diminution, which takes place in all presomatic cells of the early Ascaris embryo, the heterochromatic termini of the chromosomes are lost. Here we show that the newly formed ends of the reduced somatic chromosomes carry tandem repeats of the telomeric sequence TTAGGC. Comparison of a cloned somatic telomere with the corresponding germline chromosomal region revealed that these telomeric repeats are not present at or near the chromosomal breakage site. They are most likely added by a telomerase-mediated event. Chromosomal breakage, which precedes the telomere addition process, takes place within a short, specific chromosomal region (CBR); however, it does not occur at a single locus, but rather at many different sites. Altogether, our data show that chromatin diminution in Ascaris is a complex molecular process that includes site-specific chromosomal breakage, new telomere formation, and DNA degradation.  相似文献   

6.
7.
Three genes in the major sperm protein (MSP) gene family from the potato cyst nematode Globodera rostochiensis were cloned and sequenced. In contrast to the absence of introns in Caenorhabditis elegans MSP genes, these genes in G. rostochiensis contained a 57 nucleotide intron, with normal exon-intron boundaries, in the same relative location as the intron in Onchocerca volvulus. The MSP genes of G. rostochiensis had putative CAAT, TATA, and polyadenylation signals. The predicted G. rostochiensis MSP gene product is 126 amino acids long, one residue shorter than the products in the other species. The comparison of MSP amino acid sequences from four diverse nematode species suggests that O. volvulus, Ascaris suum, and C. elegans may be more closely related to each other than they are to G. rostochiensis.  相似文献   

8.
The functions of redundant (junk, selfish, parasitic, etc.) DNA in eukaryotes can be reliably inferred from chromatin diminution (programmed elimination of up to 94% of the genome from somatic germ cells in Ascaris and Cyclops). These functions should be sought in germ cells, where this DNA is preserved during the entire life time of the species. A possible biological role of redundant DNA as a factor disrupting meiotic chromosome synapsis is suggested. At the same time, chromatin diminution itself can act as a mechanism of postzygotic isolation. All stage of the complex diminution mechanism could not be fixed in the genetic program of the species via gradual accumulation of mutations. The "program" of diminution must have appeared at once and in the completed form.  相似文献   

9.
The swine intestinal nematode, Ascaris suum, eliminates chromatin material from its primordial somatic cells during early embryogenesis. A technique for isolation of nuclei from pre- and post-diminution stage embryos has been developed and these isolated nuclei were used in investigations of nuclear events during diminution. The amount of DNA per nucleus determined by diphenylamine assays and isotope dilutions was 0.66 pg and 0.29 pg in pre- and post-diminution nuclei, respectively. Thus, A. suum loses 56% of its nuclear DNA during diminution. The loss of nuclear DNA enabled in vivo examination of histone to DNA ratios as a function of changes in DNA quantities. Ascaris histones were identified by acid extractability and tryptic fingerprint comparison with rat liver histones. Measurement of histone quantities was accomplished using linearity of Coomassie blue binding to histones separated in dodecyl sulfate gels. Ascaris nucleosomal histones levels were relatively constant in pre- and post-diminution nuclei. However, nucleosomal histone to DNA ratios approximately doubled during diminution.  相似文献   

10.
Molecular characterization of Ascaris suum DNA and of chromatin diminution   总被引:2,自引:0,他引:2  
A technique for the extraction of pure somatic (post-diminution) and germ line (pre-diminution) DNA from the parasitic nematode Ascaris is described. Uncontaminated post- and pre-diminution DNAs were sheared and reassociated to different C0t values. Computer analysis of the complete reassociation kinetics determined that 33% of the germ line genome is eliminated during the process of chromatin diminution. The eliminated DNA is comprised of repetitive and unique sequences in an approx. 1:1 ratio.  相似文献   

11.
As a first step in our studies of functionally rearranged K genes of man we cloned the germline JK-CK region from placenta DNA employing a mouse JK clone as hybridization probe. Subclones of the human JK-CK region were then used to characterize and clone the rearranged K genes of the lymphoid cell lines Walker and Daudi. The Walker cell line contains one rearranged and one germline K allele (K+,KO; ref. 1). Only one K gene was found in Daudi cells (K+). Restriction mapping and DNA sequencing showed, that the rearranged K genes from both cell lines are closely related. These features make the two cell lines particularly suitable for studies on the chromatin structure of K light chain genes. The 5' flanks of the two genes (388 bp) are identical while there is a 12% divergence between the VK gene segments themselves. This situation may reflect somatic mutation processes and/or gene conversion like events.  相似文献   

12.
Chromatin diminution in Parascaris univalens and Ascaris suum undoubtedly represents an interesting case of developmentally programmed DNA rearrangement in higher eukaryotes. It is a complex mechanism involving chromosomal breakage, new telomere addition and DNA degradation, and occurs in all presomatic cells. The process is rather specific with respect to its developmental timing and the chromosomal regions that are eliminated. The functional significance of chromatin diminution still remains an enigma. The fact, however, that single-copy, protein-coding genes are contained in the eliminated DNA demonstrates that in P. univalens and A. suum, there is a qualitative difference between germ-line and somatic genomes, and suggests that chromatin diminution may be used as a "throw-away" approach to gene regulation. We present a hypothesis as to how, during evolution, a partial genome duplication might have been linked to the process of chromatin diminution, in order to provide a selective advantage to parasitic DNA-eliminating nematodes.  相似文献   

13.
Cells belonging to the germ lineage segregate physically and molecularly from their somatic neighbors during embryogenesis. While germ line‐specific chromatin modifications have been identified at later stages in the Caenorhabditis elegans nematode, none have been found in the single P4 germ line founder cell that arises at the beginning of gastrulation. Using light and electron microscopy, we now report that the chromatin organization in the germ line founder cell of the early C. elegans embryo is distinct from that in the neighboring somatic cells. This unique organization is characterized by a greater chromatin compaction and an expansion of the interchromatin compartment. The ultrastructure of individual chromatin domains does not differ between germ line and somatic cells, pointing to a specific organization mainly at the level of the whole nucleus. We show that this higher order reorganization of chromatin is not a consequence of the P4 nucleus being smaller than somatic nuclei or having initiated mitosis. Imaging of living embryos expressing fluorescent markers for both chromatin and P granules revealed that the appearance of a distinct chromatin organization in the P4 cell occurs approximately 10 min after its birth and coincides with the aggregation of P granules around the nucleus, suggesting a possible link between these two events. The higher order reorganization of chromatin that is reported here occurs during the establishment of definitive germ cell identity. The changes we have observed could therefore be a prerequisite for the programming of chromatin totipotency.  相似文献   

14.
Chromatin diminution in the parasitic nematode Ascaris suum represents an interesting case of developmentally programmed DNA rearrangement in higher eukaryotes. At the molecular level, it is a rather complex event including chromosome breakage, new telomere formation and DNA degradation. Analysis of a cloned somatic telomere (pTel1) revealed that it has been newly created during the process of chromatin diminution by the addition of telomeric repeats (TTAGGC)n to a chromosomal breakage site (Müller et al., 1991). However, telomere addition does not occur at a single chromosomal locus, but at many different sites within a short chromosomal region, termed CBR1 (chromosomal breakage region 1). Here we present the cloning and the analysis of 83 different PCR amplified telomere addition sites from the region of CBR1. The lack of any obvious sequence homology shared among them argues for a telomerase-mediated healing process, rather than for a recombinational event. This hypothesis is strongly supported by the existence of 1-6 nucleotides corresponding to and being in frame with the newly added telomeric repeats at almost all of the telomere addition sites. Furthermore, we show that telomeres are not only added to the ends of the retained chromosomal portions, but also to the eliminated part of the chromosomes, which later on become degraded in the cytoplasm. This result suggests that de novo telomere formation during the process of chromatin diminution represents a non-specific process which can heal any broken DNA end.  相似文献   

15.
The segregation of progenitor somatic cells from those of the primordial germ cells that sequester and retain elevated levels of DNA during subsequent developmental events, poses an interesting, alternative pathway of chromosome behavior during the reproductive cycle of certain species of cyclopoid copepods and several other organisms. Separation of maternal and paternal chromosome sets during very early cleavages (gonomery) is often a feature following marked elevations of DNA levels in germ cells for some of these species. Here, we report on the accumulation of large amounts of DNA in germ line nuclei of both female and male juveniles and adults of a freshwater copepod, Mesocyclops edax (Forbes, 1890). We also report the robust uptake of 3H-thymidine by germ cells prior to gametogenesis in this species. By using cytophotometric analysis of the DNA levels in both germ line cells and somatic cells from the same specimens we demonstrate that germ cell nuclei accumulate high levels of DNA prior to the onset of gametogenesis. These elevated amounts coincide with the levels of heterochromatic DNA discarded during chromatin diminution. A new model is proposed of major cytological events accompanying the process of chromatin diminution in M. edax.  相似文献   

16.
We studied the functional significance of marked differences in the DNA content of somatic cells and germ line nuclei by static Feulgen-DNA cytophotometry for several species of microcrustaceans that exhibit chromatin diminution during very early stages of embryogenesis. Mature females and males showed many gonadal nuclei with elevated amounts of DNA that persist until dispersal of this "extra" DNA throughout the cytoplasm as fragments and coalescing droplets of chromatin during anaphase of the diminution division.  相似文献   

17.
How cell lineages are established during development in higher eukaryotes is being addressed by geneticists and by developmental and molecular biologists. In Drosophila melanogaster, a gene corresponding to a germ-line-specific RNA helicase, vasa, has been shown to be a component o f the posteriorly localized germ granules o f the developing embryo. A putative RNA helicase, glh-I r which appears germ-line specific in its expression, has recently been reported from the free-living nematode Caenorhabditis elegans. Parasitologists studying the nematode Ascaris lumbricoides var. suum have found it to be a useful complement to Caenorhabditis. Deborah Roussell, Michael Gruidl and Karen Bennett predict that Ascaris will be valuable in determining the role played by germ-line helicases in development.  相似文献   

18.
Telomerase is the ribonucleoprotein complex responsible for the maintenance of the physical ends, or telomeres, of most eukaryotic chromosomes. In this study, telomerase activity has been identified in cell extracts from the nematode Ascaris suum. This parasitic nematode is particularly suited as a model system for the study of telomerase, because it shows the phenomenon of chromatin diminution, consisting of developmentally programmed chromosomal breakage, DNA elimination, and new telomere formation. In vitro, the A. suum telomerase is capable of efficiently recognizing and elongating nontelomeric primers with nematode-specific telomere repeats by using limited homology at the 3' end of the DNA to anneal with the putative telomerase RNA template. The activity of this enzyme is developmentally regulated, and it correlates temporally with the phenomenon of chromatin diminution. It is up-regulated during the first two rounds of embryonic cell divisions, to reach a peak in 4-cell-stage embryos, when three presomatic blastomeres prepare for chromatin diminution. The activity remains high until the beginning of gastrulation, when the last of the presomatic cells undergoes chromatin diminution, and then constantly decreases during further development. In summary, our data strongly argue for a role of this enzyme in chromosome healing during the process of chromatin diminution.  相似文献   

19.
20.
Ahmed S 《Aging cell》2006,5(6):559-563
A dichotomy exists between germ and somatic cells in most organisms, such that somatic cell lineages proliferate for a single generation, whereas the germ cell lineage has the capacity to proliferate from one generation to the next, indefinitely. Several theories have been proposed to explain the unlimited replicative life span of germ cells, including the elimination of damaged germ cells by apoptosis or expression of high levels of gene products that prevent aging in somatic cells. These theories were tested in the nematode Caenorhabditis elegans by examining the consequences of eliminating either apoptosis or the daf-16, daf-18 or sir-2.1 genes that promote longevity of postmitotic somatic cells. However, germ cells of strains deficient for these activities displayed an unlimited proliferative capacity. Thus, C. elegans germ cells retain their youthful character via alternative pathways that prevent or eliminate damage that accumulates as a consequence of cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号