首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kim IS  Kim SJ  Lee JK  Li QR  Jung YH 《Carbohydrate research》2007,342(11):1502-1509
A stereoselective approach for synthesizing (2R,5S)-dihydroxymethyl-(3R,4R)-dihydroxypyrrolidine 1 (2,5-dideoxy-2,5-imino-d-glucitol, DGDP) was achieved using a seven-step approach starting from 2,3,4,6-tetra-O-benzyl-d-mannose (7). Key steps for the preparation of the title compound 1 involved the regioselective and diastereoselective amination of the cinnamyl anti-1,2-polybenzyl ethers 5 and 6 using chlorosulfonyl isocyanate (CSI) and ring cyclization to form the pyrrolidine ring. The reaction between anti-1,2-polybenzyl ether 5 and CSI in toluene at 0 degrees C afforded the corresponding anti-1,2-amino alcohol 4 as a major product with a diastereoselectivity of 16:1 in 76% yield. The mechanism underlying these reactions may be explained by the neighboring-group effect leading to the retention of stereochemistry.  相似文献   

2.
2,4-Dimethyl-6-ethoxyquinoline (2), 1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline nitroxide (3), 2,6-dihydro-2,2,4-trimethyl-6-quinone imine N-oxide (4), 2,6-dihydro-2,2,4-trimethyl-6-quinone imine (5), 1,8′-di(1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline) (6) and 1,2-dihydro-6-hydroxy-2,2,4-trimethylquinoline (7) have been prepared from 1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline (1) (ethoxyquin) and their spectroscopic properties (UV, IR, mass and NMR) examined.  相似文献   

3.
Either 3-O-benzoyl- (2a) or 3-O-benzyl-1,2-O-isopropylidene-beta-D-fructopyranose (2b) were regioselectively O-benzylated at C-4 to give 4a and 4b, respectively, which were transformed into 5-azido-3-O-benzoyl-4-O-benzyl- (6a) and 5-azido-3,4-di-O-benzyl-5-deoxy-1,2-O-isopropylidene-alpha-L-sorbopyranose (6b) by nucleophilic displacement of the corresponding 5-O-mesyl derivatives 5a and 5b by sodium azide in DMF, respectively. Compound 6b was also prepared from 4b in one step by the Mitsunobu methodology. Deacetonation of 6a and 6b gave the partially protected free azidouloses 8a and 8b, respectively, that were protected as their 1-O-TBDPS derivatives 9a and 9b. Hydrogenation of 9b over Raney nickel gave stereoselectively (2R,3R,4R,5S)-3,4-dibenzyloxy-2'-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (12) which was identified by transformation into the well known (2R,3R,4R,5S)-3,4-dihydroxy-2,5-bis(hydroxymethyl)pyrrolidine (1, DGDP).  相似文献   

4.
The stereoselective reduction of the bicyclic diketone bicyclo[2.2.2]octane-2,6-dione, to the ketoalcohol (1R,4S,6S)-6-hydroxybicyclo[2.2.2]octane-2-one, was used as a model reduction to optimize parameters involved in NADPH-dependent reductions in Saccharomyces cerevisiae with glucose as co-substrate. The co-substrate yield (ketoalcohol formed/glucose consumed) was affected by the initial concentration of bicyclic diketone, the ratio of yeast to glucose, the medium composition, and the pH. The reduction of 5 g l(-1) bicyclic diketone was completed in less than 20 h in complex medium (pH 5.5) under oxygen limitation with an initial concentration of 200 g l(-1) glucose and 5 g l(-1) yeast. The co-substrate yield was further enhanced by genetically engineered strains with reduced phosphoglucose isomerase activity and with the gene encoding alcohol dehydrogenase deleted. Co-substrate yields were increased 2.3-fold and 2.4-fold, respectively, in these strains.  相似文献   

5.
Ning J  Kong F 《Carbohydrate research》2001,330(2):165-175
The title compounds 5-O-acetyl-1,2-anhydro-3-O-benzyl-alpha-D-ribofuranose and 5-O-acetyl-1,2-anhydro-3-O-benzyl-beta-D-lyxofuranose, and 6-O-acetyl-1,2-anhydro-3,4-di-O-benzyl-alpha-D-glucopyranose and 6-O-acetyl-1,2-anhydro-3,4-di-O-benzyl-beta-D-talopyranose, and 5-O-acetyl-1,2-anhydro-3,6-di-O-benzyl-beta-D-mannofuranose and 1,2-anhydro-5,6-di-O-benzoyl-3-O-benzyl-beta-D-mannofuranose have each been synthesized from the corresponding 2-O-tosylate and 1-free hydroxyl intermediates by base-initiated intramolecular S(N)2 ring closure in almost quantitative yields. Acetyl and benzoyl groups were not affected in the ring closure reactions. Condensation of 6-O-acetyl-1,2-anhydro-3,4-di-O-benzyl-alpha-D-glucopyranose and 5-O-acetyl-1,2-anhydro-3,6-di-O-benzyl-beta-D-mannofuranose with 1,2:3,4-di-O-isopropylidene-alpha-D-galactopyranose in the presence of ZnCl2 as the catalyst afforded the 1,2-trans-linked 6-O-acetyl-3,4-di-O-benzyl-beta-D-glucopyranosyl-(1-->6)-1,2:3,4-di-O-isopropylidene-alpha-D-galactopyranose and 5-O-acetyl-3,6-di-O-benzyl-alpha-D-mannofuranosyl-(1-->6)-1,2:3,4-di-O-isopropylidene-alpha-D-galactopyranose as the sole products in satisfactory yields, while condensation of 5-O-acetyl-1,2-anhydro-3-O-benzyl-beta-D-lyxofuranose with 3-O-benzyl-1,2-O-isopropylidene-alpha-D-xylofuranose yielded the 1,2-trans-linked 5-O-acetyl-3-O-benzyl-alpha-D-lyxofuranosyl-(1-->5)-3-O-benzyl-1,2-O-isopropylidene-alpha-D-xylofuranose as the sole product in a good yield. The 6-O-acetyl group in the glycosyl donor, 6-O-acetyl-1,2-anhydro-3,4-di-O-benzyl-alpha-D-glucopyranose, did not influence the stereoselectivity of the ring-opening-coupling reaction.  相似文献   

6.
A chemical library was constructed based on the scaffold of camphecene (2-(E)-((1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene-aminoethanol). The modifications included introduction of mono-and bicyclic heterocyclic moieties in place of the terminal hydroxyl group of camphecene. All compounds were tested for cytotoxicity and anti-viral activity against influenza virus A/Puerto Rico/8/34 (H1N1) in MDCK cells. Among 15 tested compounds 11 demonstrated a selectivity index (SI) higher than 10 and IC50 values in the micromolar range. The antiviral activity and toxicity were shown to strongly depend on the nature of the heterocyclic substituent. Compounds 2 and 14 demonstrated the highest virus-inhibiting activity with SIs of 106 and 183, and bearing pyrrolidine and piperidine moieties, correspondingly. Compound 14 was shown to interfere with viral reproduction at early stages of the viral life cycle (0–2 h post-infection). Taken together, our data suggest potential of camphecene derivatives in particular and camphor-based imine derivatives in general as effective anti-influenza compounds.  相似文献   

7.
The active catalysts for the enantioselective ring opening (ARO) of meso-stilbene oxide, cis-butene oxide, cyclohexene oxide, cyclopentene oxide, and cyclooctene oxide with various substituted anilines were generated in situ by the reaction of Ti(O(i)Pr)(4) with poly-[(R,R)-N,N'-bis-{3-(1,1-dimethylethyl)-5-methylene salicylidene} cyclohexane-1,2-diamine]-1 and (1R,2R)-N,N'-bis[3,5-di(tert-butyl)salicylidene] cyclohexane-1,2-diamine-2. These catalysts in the presence of nonracemic imine as an additive provided β-amino alcohol in excellent yield (99%) and chiral purity (enantiomeric excess (ee) up to 99%) for the ARO of meso-stilbene oxide with aniline. The same protocol was less effective for the ARO of cyclic epoxides; however, when triphenylphosphine was used as an additive, there was a significant improvement in catalyst performance for the ARO of cyclohexene oxide (yield, 85-90%; ee, 63-67%). Both in situ generated polymeric and monomeric catalysts performed in a similar manner except that the polymeric catalyst Ti(IV)-1 was more active and recycled several times with retention of enantioselectivity when compared with the monomeric catalyst Ti(IV)-2, which was nonrecyclable.  相似文献   

8.
An efficient chiron approach for the synthesis of bicyclic diazasugars 4a and 4b having both -CH(2)OH and -OH functionality at the same carbon atom (C-6) is reported. Thus, easily available alpha-D-xylo-pentodialdo-1,4-furanose 5, obtained from D-glucose, on aldol-crossed Cannizzaro reaction followed by hydrogenolysis afforded 7. The regio-selective beta- and alpha-sulfonylation of hydroxymethyl groups in 7 afforded 8a (beta-sulfonylation) and 11 (alpha-sulfonylation) in good yields. The cleavage of the 1,2-acetonide functionality, individually in 8a and 11, followed by reaction with ethylenediamine gave in situ formation of sugar aminals that undergo concomitant nucleophilic displacement of the sulfonyloxy group, by amino functionality, to give hitherto unknown bicyclic diazasugars 4a and 4b, respectively. The inhibitory potency of the earlier reported bicyclic diazasugars 3a,b and 4a,b was evaluated against alpha- and beta-glycosidases and they were found to be potent and specific against the beta-glycosidases with IC(50) and K(1) values in the micro molar range.  相似文献   

9.
10.
SAR studies of 2-arylimidazolo[1,2-a]pyrimid-5-ones 10a-m, which were derived from initial lead 3a, resulted in the discovery of a series of potent nonpeptide human GnRH receptor antagonists. Compounds with good potency (e.g., 10e, K(i)=7.5 nM) were prepared by introduction of a 2-(2-pyridyl)ethyl at the basic nitrogen and a 3-pentyl ester at the 6-position of the bicyclic core.  相似文献   

11.
Endogenously generated nitric oxide (NO) mediates a host of important physiological functions, playing roles in the vascular, immunological, and neurological systems. As a result, exogenous agents that release NO have become important therapeutic interventions and research tools. O(2)-Vinyl 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (V-PYRRO/NO) is a prodrug designed with the hypothesis that it might release nitric oxide via epoxidation of the vinyl group by cytochrome P450, followed by enzymatic and/or spontaneous epoxide hydration to release the ultimate NO-donating moiety, 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate (PYRRO/NO) ion. In this study, we investigated this hypothetical activation mechanism quantitatively for V-PYRRO/NO using cDNA-expressed human cytochrome P450 (CYP)2E1. Incubation with CYP2E1 and an NADPH-regenerating system resulted in a time-dependent decomposition of V-PYRRO/NO, with a turnover rate of 2.0 nmol/min/pmol CYP2E1. Nitrate and nitrite were detected in high yield as metabolites of NO. The predicted organic metabolites pyrrolidine and glycolaldehyde were also detected in near-quantitative yields. The enzymatic decomposition of V-PYRRO/NO was also catalyzed, albeit at lower rates, by CYP2A6 and CYP2B6. We conclude that the initial step in the metabolism of V-PYRRO/NO to NO in the liver is catalyzed efficiently but not exclusively by the alcohol-inducible form of cytochrome P450 (CYP2E1). The results confirm the proposed activation mechanism involving enzymatic oxidation of the vinyl group in V-PYRRO/NO followed by epoxide hydration and hydrolytic decomposition of the resulting PYRRO/NO ion to generate nitric oxide.  相似文献   

12.
A pyridone analogue (5) of the potent bicyclic cannabinoid CP 47,497 (6) has been synthesized as a model for one conformational isomer of anandamide and to test the hypothesis that an amide carbonyl may serve as a hydrogen bond acceptor in interactions with the CB(1) cannabinoid receptor. Pyridone 5 was synthesized from 6-bromo-2-methoxypyridine (10) by palladium catalyzed coupling with 1-pentyne to provide 11. Catalytic hydrogenation of 11 and hydrolysis to pyridone 13 followed by N-alkylation gave 1-propyl-6-pentyl-2-pyridone (15). Bromination of 15 gave dibromide 18, which underwent Heck coupling with cyclohex-2-en-1-one to give enone 19. Catalytic hydrogenation of 19 gave ketone 20 which was reduced using NaBH(4) to alcohol 5. Reduction of 20 with K-Selectride gave the axial epimer of 5 (21). Neither alcohol 5 nor 21 have significant affinity for the CB(1) receptor (K(i) > 970 nM), but both have moderately high affinity for the CB(2) receptor (K(i) < 60 nM).  相似文献   

13.
SN2-type reaction of 3-O-(1-imidazyl)sulfonyl-1,2:5,6-di-O-isopropylidene-alpha-D-gluco furanose with benzoate gave the 3-O-benzoyl-alpha-D-allo derivative 2, which was hydrolysed to give the 5,6-diol 3. Compound 3 was converted into the 6-deoxy-6-iodo derivative 4 which was reduced with tributylstannane, and then position 5 was protected by benzyloxymethylation, to give 3-O-benzoyl-5-O-benzyloxymethyl-6-deoxy-1,2-O-isopropylidene-alpha -D- allofuranose (6). Debenzoylation of 6 gave 7, (1-imidazyl)sulfonylation gave 8, and azide displacement gave 3-azido-5-O-benzyloxymethyl-3,6-dideoxy- 1,2-O-isopropylidene-alpha-D-glucofuranose (9, 85%). Acetolysis of 9 gave 1,2,4-tri-O-acetyl-3-azido-3,6-dideoxy-alpha,beta-D-glucopyranose (10 and 11). Selective hydrolysis of AcO-1 in the mixture of 10 and 11 with hydrazine acetate (----12), followed by conversion into the pyranosyl chloride 13, treatment with N,N-dimethylformamide dimethyl acetal in the presence of tetrabutylammonium bromide, and benzylation gave 3-azido-4-O-benzyl-3,6-dideoxy-1,2-O-(1-methoxyethylidene)-alpha-D -glucopyranose (15). Treatment of 15 with dry acetic acid gave 1,2-di-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranose (16, 86% yield) that was an excellent glycosyl donor in the presence of trimethylsilyl triflate, allowing the synthesis of cyclohexyl 2-O-acetyl-3-azido-4-O-benzyl-3,6-dideoxy-beta-D-glucopyranoside (17, 90%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Per-O-tert-butyldimethylsilyl-α,β-d-galactofuranosyl isothiocyanate (4) was synthesized by the reaction of per-O-TBS-β-d-galactofuranose (1) with KSCN, promoted by TMSI. Upon O-desilylation (1,2-dideoxy-α-d-galactofuranoso)[1,2d]-1,3-oxazolidine-2-thione (6), the cis-fused bicyclic thiocarbamate was obtained as the only product. Conformational analysis, aided by molecular modelling, showed two stable twist forms ((3)T(4) and (4)T(O)) for the five-membered sugar ring in 6. In aqueous solution, the equilibrium favours the first conformation (3:1 ratio). On the other hand, this ratio decreases for less polar solvents.  相似文献   

15.
A tetrahydroxyindolizidine alkaloid, 6,7-diepicastanospermine, was isolated from the seeds of Castanospermum australe by extraction with methanol and purified to homogeneity using ion-exchange, preparative thin-layer, and radial chromatography. A very low yield of a pyrrolidine alkaloid, N-(hydroxyethyl)-2-(hydroxymethyl)-3-hydroxypyrrolidine, was also obtained by analogous methods. The purity of both alkaloids was established by gas chromatography of their trimethylsilyl (TMS) derivatives as better than 99%. The molecular weight of each alkaloid was established as 189 and 161, respectively, by mass spectrometry, and the structure of each was deduced from their 1H and 13C NMR spectra. The structure of the pyrrolidine alkaloid is suggestive of a possible biosynthetic route to the polyhydroxyindolizidine and polyhydroxypyrrolizidine alkaloids which co-occur in C. australe. 6,7-Diepicastanospermine was found to be a moderately good inhibitor of the fungal alpha-glucosidase, amyloglucosidase (Ki = 8.4 x 10(-5) M) and a relatively weak inhibitor of beta-glucosidase. It failed to inhibit alpha- or beta-galactosidase, alpha- or beta-mannosidase, or alpha-L-fucosidase. Comparison of its inhibitory activity toward amyloglucosidase with those of its isomers, castanospermine and 6-epicastanospermine, demonstrated that epimerization of a single hydroxyl group can produce significant alteration of such inhibitory properties.  相似文献   

16.
Protein glycosylation pathways are relatively poorly characterized in insect cells. As part of an overall effort to address this problem, we previously isolated a cDNA from Sf9 cells that encodes an insect alpha1,2-mannosidase (SfManI) which requires calcium and is inhibited by 1-deoxymannojirimycin. In the present study, we have characterized the substrate specificity of SfManI. A recombinant baculovirus was used to express a GST-tagged secreted form of SfManI which was purified from the medium using an immobilized glutathione column. The purified SfManI was then incubated with oligosaccharide substrates and the resulting products were analyzed by HPLC. These analyses showed that SfManI rapidly converts Man(9)GlcNAc(2)to Man(6)Glc-NAc(2)isomer C, then more slowly converts Man(6)GlcNAc(2)isomer C to Man(5)GlcNAc(2). The slow step in the processing of Man(9)GlcNAc(2)to Man(5)GlcNAc(2)by SfManI is removal of the alpha1,2-linked mannose on the middle arm of Man(9)GlcNAc(2). In this respect, SfManI is similar to mammalian alpha1,2-mannosidases IA and IB. However, additional HPLC and(1)H-NMR analyses demonstrated that SfManI converts Man(9)GlcNAc(2)to Man(5)GlcNAc(2)primarily through Man(7)GlcNAc(2)isomer C, the archetypal Man(9)GlcNAc(2)missing the lower arm alpha1,2-linked mannose residues. In this respect, SfManI differs from mammalian alpha1,2-mannosidases IA and IB, and is the first alpha1,2-mannosidase directly shown to produce Man(7)GlcNAc(2)isomer C as a major processing intermediate.  相似文献   

17.
The synthetic methods for preparing carbohydrates bearing a C-branched substituent of the type CF2-Y, with Y = F, Y = CnF(2n + 1) or Y = a carbon-attached or heteroatom-attached nonfluorinated residues, are reviewed. Both direct introduction of C-branched fluorinated substituents (direct trifluoromethylation, perfluoroalkylation or difluoromethylenation) and building block methods from fluorinated synthons are considered.  相似文献   

18.
The substrate oxidation profiles of Sphingomonas yanoikuyae B1 biphenyl-2,3-dioxygenase and cis-biphenyl dihydrodiol dehydrogenase activities were examined with 1,2-dihydronaphthalene and various cis-diols as substrates. m-Xylene-induced cells of strain B1 oxidized 1,2-dihydronaphthalene to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2-3,4-tetrahydronaphthalene as the major product (73% relative yield). Small amounts of (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (15%), naphthalene (6%), and alpha-tetralone (6%) were also formed. Strain B8/36, which lacks an active cis-biphenyl dihydrodiol dehydrogenase, formed (+)-(1R,2S)-cis-1,2-dihydroxy-1,2-dihydronaphthalene (51%), in addition to (-)-(1R,2S)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene (44%) and (+)-(R)-2-hydroxy-1,2-dihydronaphthalene (5%). The cis-biphenyl dihydrodiol dehydrogenase of strain B1 oxidized both enantiomers of cis-1,2-dihydroxy-1,2-dihydronaphthalene, but only the (+)-(1S,2R)-enantiomers of cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene. The results show that biphenyl dioxygenase expressed by S. yanoikuyae catalyzes dioxygenation, monooxygenation, and desaturation reactions with 1,2-dihydronaphthalene as the substrate, and cis-biphenyl dihydrodiol dehydrogenase catalyzes the enantioselective dehydrogenation of (+)-(1S,2R)-cis-1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene and (+)-(1S,2R)-cis-1,2-dihydroxy-3-phenylcyclohexa-3,5-diene.  相似文献   

19.
Interaction of cytidine 5'-phosphate with chloroacetone or p-tosyloxyacetone leads to 2-methyl-5,6-dihydro-5-oxo-6-(5-0-phospho-beta-D-ribofuranosyl)-imidazo/1,2-c/pyrimidine (2-methylethenocytidine 5'-phosphate) whereas analogous reaction with phenacyl bromide produces similar 2-phenyl-derivative. The bicyclic nucleotides obtained showed significant UV absorption at long wavelength where common nucleotides and proteins exhibited no absorption. These derivatives are highly fluorescent when heterocyclic ring is protonated. The absorption and fluorescent properties of the substituted ethenocytidine 5'-phosphoate derivatives seem to be suitable for their use as fluorescent probes or labels in biochemical studies.  相似文献   

20.
The preparation of N-methyl-BTHIQ (4) from N-phenylethyl-phenacetamide (1) by cyclization, reduction and N-alkylation in acid medium has been achieved in good yield in a 'one-pot' procedure. Acylation of imine (2) intermediate afforded the Z and E stereoselectivity in the enamide formation. 6-Hydroxy-BTHIQ (7) shows selectivity for D2 dopamine receptors, while its N-methylated homologue (8) displays higher affinities for both D1 and D2 receptor types, with an unexpected increase in D1 dopamine receptor affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号