首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Hematopoietic stem cells (HSC), in particular mobilized peripheral blood stem cells, represent an attractive target for cell and gene therapy. Efficient gene delivery into these target cells without compromising self-renewal and multi-potency is crucial for the success of gene therapy. We investigated factors involved in the ex vivo transduction of CD34+ HSCs in order to develop a clinically relevant transduction protocol for gene delivery. Specifically sought was a protocol that allows for efficient transduction with minimal ex vivo manipulation without serum or other reagents of animal origin.

Methodology/Principal Findings

Using commercially available G-CSF mobilized peripheral blood (PB) CD34+ cells as the most clinically relevant target, we systematically examined factors including the use of serum, cytokine combinations, pre-stimulation time, multiplicity of infection (MOI), transduction duration and the use of spinoculation and/or retronectin. A self-inactivating lentiviral vector (SIN-LV) carrying enhanced green fluorescent protein (GFP) was used as the gene delivery vehicle. HSCs were monitored for transduction efficiency, surface marker expression and cellular function. We were able to demonstrate that efficient gene transduction can be achieved with minimal ex vivo manipulation while maintaining the cellular function of transduced HSCs without serum or other reagents of animal origin.

Conclusions/Significance

This study helps to better define factors relevant towards developing a standard clinical protocol for the delivery of SIN-LV into CD34+ cells.  相似文献   

2.

Background

Minocycline is a tetracycline antibiotic that has been proposed as a potential conjunctive therapy for HIV-1 associated cognitive disorders. Precise mechanism(s) of minocycline''s functions are not well defined.

Methods

Fourteen rhesus macaques were SIV infected and neuronal metabolites measured by proton magnetic resonance spectroscopy (1H MRS). Seven received minocycline (4 mg/kg) daily starting at day 28 post-infection (pi). Monocyte expansion and activation were assessed by flow cytometry, cell traffic to lymph nodes, CD16 regulation, viral replication, and cytokine production were studied.

Results

Minocycline treatment decreased plasma virus and pro-inflammatory CD14+CD16+ and CD14loCD16+ monocytes, and reduced their expression of CD11b, CD163, CD64, CCR2 and HLA-DR. There was reduced recruitment of monocyte/macrophages and productively infected cells in axillary lymph nodes. There was an inverse correlation between brain NAA/Cr (neuronal injury) and circulating CD14+CD16+ and CD14loCD16+ monocytes. Minocycline treatment in vitro reduced SIV replication CD16 expression on activated CD14+CD16+ monocytes, and IL-6 production by monocytes following LPS stimulation.

Conclusion

Neuroprotective effects of minocycline are due in part to reduction of activated monocytes, monocyte traffic. Mechanisms for these effects include CD16 regulation, reduced viral replication, and inhibited immune activation.  相似文献   

3.

Background

Endothelial progenitor cells (EPCs) were shown to have angiogenic potential contributing to neovascularization. However, a clear definition of mouse EPCs by cell surface markers still remains elusive. We hypothesized that CD34 could be used for identification and isolation of functional EPCs from mouse bone marrow.

Methodology/Principal Findings

CD34+ cells, c-Kit+/Sca-1+/Lin (KSL) cells, c-Kit+/Lin (KL) cells and Sca-1+/Lin (SL) cells were isolated from mouse bone marrow mononuclear cells (BMMNCs) using fluorescent activated cell sorting. EPC colony forming capacity and differentiation capacity into endothelial lineage were examined in the cells. Although CD34+ cells showed the lowest EPC colony forming activity, CD34+ cells exhibited under endothelial culture conditions a more adherent phenotype compared with the others, demonstrating the highest mRNA expression levels of endothelial markers vWF, VE-cadherin, and Flk-1. Furthermore, a dramatic increase in immediate recruitment of cells to the myocardium following myocardial infarction and systemic cell injection was observed for CD34+ cells comparing with others, which could be explained by the highest mRNA expression levels of key homing-related molecules Integrin β2 and CXCR4 in CD34+ cells. Cell retention and incorporation into the vasculature of the ischemic myocardium was also markedly increased in the CD34+ cell-injected group, giving a possible explanation for significant reduction in fibrosis area, significant increase in neovascularization and the best cardiac functional recovery in this group in comparison with the others.

Conclusion

These findings suggest that mouse CD34+ cells may represent a functional EPC population in bone marrow, which could benefit the investigation of therapeutic EPC biology.  相似文献   

4.
5.

Background

Reactivation of chronic Chagas disease, which occurs in approximately 20% of patients coinfected with HIV/Trypanosoma cruzi (T. cruzi), is commonly characterized by severe meningoencephalitis and myocarditis. The use of quantitative molecular tests to monitor Chagas disease reactivation was analyzed.

Methodology

Polymerase chain reaction (PCR) of kDNA sequences, competitive (C-) PCR and real-time quantitative (q) PCR were compared with blood cultures and xenodiagnosis in samples from 91 patients (57 patients with chronic Chagas disease and 34 with HIV/T. cruzi coinfection), of whom 5 had reactivation of Chagas disease and 29 did not.

Principal Findings

qRT-PCR showed significant differences between groups; the highest parasitemia was observed in patients infected with HIV/T. cruzi with Chagas disease reactivation (median 1428.90 T. cruzi/mL), followed by patients with HIV/T. cruzi infection without reactivation (median 1.57 T. cruzi/mL) and patients with Chagas disease without HIV (median 0.00 T. cruzi/mL). Spearman''s correlation coefficient showed that xenodiagnosis was correlated with blood culture, C-PCR and qRT-PCR. A stronger Spearman correlation index was found between C-PCR and qRT-PCR, the number of parasites and the HIV viral load, expressed as the number of CD4+ cells or the CD4+/CD8+ ratio.

Conclusions

qRT-PCR distinguished the groups of HIV/T. cruzi coinfected patients with and without reactivation. Therefore, this new method of qRT-PCR is proposed as a tool for prospective studies to analyze the importance of parasitemia (persistent and/or increased) as a criterion for recommending pre-emptive therapy in patients with chronic Chagas disease with HIV infection or immunosuppression. As seen in this study, an increase in HIV viral load and decreases in the number of CD4+ cells/mm3 and the CD4+/CD8+ ratio were identified as cofactors for increased parasitemia that can be used to target the introduction of early, pre-emptive therapy.  相似文献   

6.

Objective

The expression of FcγRIIIa/CD16 may render monocytes targets for activation by IgG-containing immune complexes (IC). We investigated whether FcγRIIIa/CD16 was upregulated in rheumatoid arthritis (RA), associated with TNF production in response to IC-stimulation, and if this predicted response to methotrexate therapy.

Methods

FcγRIIIa/CD16 expression on CD14low and CD14++ monocytes was measured by flow cytometry in healthy controls and RA patients (early and long-standing disease). Intracellular TNF-staining was carried out after in vitro LPS or heat-aggregated immunoglobulin (HAG) activation. FcγRIIIa/CD16 expression pre- and post-steroid/methotrexate treatment was examined.

Results

Increased FcγRIIIa/CD16 expression on CD14++ monocytes in long-standing RA patients compared to controls was demonstrated (p = 0.002) with intermediate levels in early-RA patients. HAG-induced TNF-production in RA patients was correlated with the percentage of CD14++ monocytes expressing FcγRIIIa/CD16 (p<0.001). The percentage of CD14++ monocytes expressing FcγRIIIa/CD16 at baseline in early DMARD-naïve RA patients was negatively correlated with DAS28-ESR improvement 14-weeks post-methotrexate therapy (p = 0.003) and was significantly increased in EULAR non-responders compared to moderate (p = 0.01) or good responders (p = 0.003). FcγRIIIa/CD16 expression was not correlated with age, presence of systemic inflammation or autoantibody titers.

Conclusion

Increased FcγRIIIa/CD16 expression on CD14++ monocytes in RA may result in a cell that has increased responsiveness to IC-stimulation. This monocyte subset may contribute to non-response to methotrexate therapy.  相似文献   

7.

Background

In type 1 diabetes (T1D), a prototypic autoimmune disease, effector T cells destroy beta cells. Normally, CD4+CD25+high, or natural regulatory T cells (Tregs), counter this assault. In autoimmunity, the failure to suppress CD4+CD25low T cells is important for disease development. However, both Treg dysfunction and hyperactive responder T-cell proliferation contribute to disease.

Methods/Principal Findings

We investigated human CD4+CD25low T cells and compared them to CD4+CD25- T cells in otherwise equivalent in vitro proliferative conditions. We then asked whether these differences in suppression are exacerbated in T1D. In both single and co-culture with Tregs, the CD4+CD25low T cells divided more rapidly than CD4+CD25- T cells, which manifests as increased proliferation/reduced suppression. Time-course experiments showed that this difference could be explained by higher IL-2 production from CD4+CD25low compared to CD4+CD25- T cells. There was also a significant increase in CD4+CD25low T-cell proliferation compared to CD4+CD25- T cells during suppression assays from RO T1D and at-risk subjects (n = 28, p = 0.015 and p = 0.024 respectively).

Conclusions/Significance

The in vitro dual suppression assays proposed here could highlight the impaired sensitivity of certain responder T cells to the suppressive effect of Tregs in human autoimmune diseases.  相似文献   

8.

Background

Although diseases associated with microvascular endothelial dysfunction are among the most prevalent illnesses to date, currently no method exists to isolate pure endothelial cells (EC) from skeletal muscle for in vivo or in vitro study.

Methodology

By utilizing multicolor fluorescent-activated cell sorting (FACS), we have isolated a distinct population of Sca-1+, CD31+, CD34dim and CD45cells from skeletal muscles of C57BL6 mice. Characterization of this population revealed these cells are functional EC that can be expanded several times in culture without losing their phenotype or capabilities to uptake acetylated low-density lipoprotein (ac-LDL), produce nitric oxide (NO) and form vascular tubes. When transplanted subcutaneously or intramuscularly into the tibialis anterior muscle, EC formed microvessels and integrated with existing vasculature.

Conclusion

This method, which is highly reproducible, can be used to study the biology and role of EC in diseases such as peripheral vascular disease. In addition this method allows us to isolate large quantities of skeletal muscle derived EC with potential for therapeutic angiogenic applications.  相似文献   

9.

Background

Cell-based therapy shows promise in treating peripheral arterial disease (PAD); however, the optimal cell type and long-term efficacy are unknown. In this study, we identified a novel subpopulation of adult progenitor cells positive for CD34 and M-cadherin (CD34+/M-cad+ BMCs) in mouse and human bone marrow. We also examined the long-lasting therapeutic efficacy of mouse CD34+/M-cad+ BMCs in restoring blood flow and promoting vascularization in an atherosclerotic mouse model of PAD.

Methods and Findings

Colony-forming cell assays and flow cytometry analysis showed that CD34+/M-cad+ BMCs have hematopoietic progenitor properties. When delivered intra-arterially into the ischemic hindlimbs of ApoE−/− mice, CD34+/M-cad+ BMCs alleviated ischemia and significantly improved blood flow compared with CD34+/M-cad BMCs, CD34/M-cad+ BMCs, or unselected BMCs. Significantly more arterioles were seen in CD34+/M-cad+ cell-treated limbs than in any other treatment group 60 days after cell therapy. Furthermore, histologic assessment and morphometric analyses of hindlimbs treated with GFP+ CD34+/M-cad+ cells showed that injected cells incorporated into solid tissue structures at 21 days. Confocal microscopic examination of GFP+ CD34+/M-cad+ cell-treated ischemic legs followed by immunostaining indicated the vascular differentiation of CD34+/M-cad+ progenitor cells. A cytokine antibody array revealed that CD34+/M-cad+ cell-conditioned medium contained higher levels of cytokines in a unique pattern, including bFGF, CRG-2, EGF, Flt-3 ligand, IGF-1, SDF-1, and VEGFR-3, than did CD34+/M-cad cell-conditioned medium. The proangiogenic cytokines secreted by CD34+/M-cad+ cells induced oxygen- and nutrient-depleted endothelial cell sprouting significantly better than CD34+/M-cad cells during hypoxia.

Conclusion

CD34+/M-cad+ BMCs represent a new progenitor cell type that effectively alleviates hindlimb ischemia in ApoE−/− mice by consistently improving blood flow and promoting arteriogenesis. Additionally, CD34+/M-cad+ BMCs contribute to microvascular remodeling by differentiating into vascular cells and releasing proangiogenic cytokines and growth factors.  相似文献   

10.

Objective

To explore the capacity of human CD14+CD16++ and CD14++CD16- monocytes to phagocyte iron-oxide nanoparticles in vitro.

Methods

Human monocytes were labeled with four different magnetic nanoparticle preparations (Ferumoxides, SHU 555C, CLIO-680, MION-48) exhibiting distinct properties and cellular uptake was quantitatively assessed by flow cytometry, fluorescence microscopy, atomic absorption spectrometry and Magnetic Resonance Imaging (MRI). Additionally we determined whether cellular uptake of the nanoparticles resulted in phenotypic changes of cell surface markers.

Results

Cellular uptake differed between the four nanoparticle preparations. However for each nanoparticle tested, CD14++CD16- monocytes displayed a significantly higher uptake compared to CD14+CD16++ monocytes, this resulted in significantly lower T1 and T2 relaxation times of these cells. The uptake of iron-oxide nanoparticles further resulted in a remarkable shift of expression of cell surface proteins indicating that the labeling procedure affects the phenotype of CD14+CD16++ and CD14++CD16- monocytes differently.

Conclusion

Human monocyte subsets internalize different magnetic nanoparticle preparations differently, resulting in variable loading capacities, imaging phenotypes and likely biological properties.  相似文献   

11.

Background

In the intestine, the integrin CD103 is expressed on a subset of T regulatory (Treg) cells and a population of dendritic cells (DCs) that produce retinoic acid and promote immune homeostasis. However, the role of CD103 during intestinal helminth infection has not been tested.

Methodology/Principal Findings

We demonstrate that CD103 is dispensable for the development of protective immunity to the helminth parasite Trichuris muris. While we observed an increase in the frequency of CD103+ DCs in the lamina propria (LP) following acute high-dose infection with Trichuris, lack of CD103 had no effect on the frequency of CD11c+ DCs in the LP or mesenteric lymph nodes (mLN). CD103-deficient (CD103−/−) mice develop a slightly increased and earlier T cell response but resolve infection with similar kinetics to control mice. Similarly, low-dose chronic infection of CD103−/− mice with Trichuris resulted in no significant difference in immunity or parasite burden. Absence of CD103 also had no effect on the frequency of CD4+CD25+Foxp3+ Treg cells in the mLN or LP.

Conclusions/Significance

These results suggest that CD103 is dispensable for intestinal immunity during helminth infection. Furthermore, lack of CD103 had no effect on DC or Treg recruitment or retention within the large intestine.  相似文献   

12.
Leung EL  Fiscus RR  Tung JW  Tin VP  Cheng LC  Sihoe AD  Fink LM  Ma Y  Wong MP 《PloS one》2010,5(11):e14062

Background

The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential.

Methodology/Principal Finding

The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44 cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44 cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44 cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas.

Conclusion/Significance

Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment.  相似文献   

13.

Background

The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8+ T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8+ T cell response via cross-presentation of bacterial antigens onto MHC class I molecules. Cross-presentation of Salmonella by DCs however, is accompanied by the induction of apoptosis in the DCs. Besides antibody production, B cells are required to clear Salmonella infection for other unknown reasons.

Methodology/Principal Findings

Here we show that Salmonella-specific B cells that phagocytose Salmonella upon BCR-ligation reactivate human memory CD8+ T cells via cross-presentation yielding a Salmonella-specific cytotoxic T cell response. The reactivation of CD8+ T cells is dependent on CD4+ T cell help. Unlike the DCs, B cell-mediated cross-presentation of Salmonella does not coincide with apoptosis.

Conclusions/Significance

B cells form a new player in the activation of the cytotoxic effector arm of the immune response and the generation of effective adaptive immunity in Salmonella infection.  相似文献   

14.

Background

NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated.

Methodology/Principal Findings

Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP), of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg). The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC) into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of “NK-ireg” cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34+ PB-HP. Finally, a small subset of NKp46+ HLA-G+ IL-10+ is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells.

Conclusions/Significance

In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56+ CD16+ NKp30+ NKp44+ NKp46+ CD94+ CD69+ CCR7+) generated from specific pSTAT6+ GATA3+ precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant rejection or graft versus host diseases. In addition, NK-ireg cells can be easily derived from peripheral blood of the patients and could constitute an autologous biotherapic tool to be used combined or in alternative to other immuno-regulatory cells.  相似文献   

15.

Aims

Circulating endothelial progenitor cells (EPC), involved in endothelial regeneration, neovascularisation, and determination of prognosis in cardiovascular disease can be characterised with functional assays or using immunofluorescence and flow cytometry. Combinations of markers, including CD34+KDR+ or CD133+KDR+, are used. This approach, however may not consider all characteristics of EPC. The lack of a standardised protocol with regards to reagents and gating strategies may account for the widespread inter-laboratory variations in quantification of EPC. We, therefore developed a novel protocol adapted from the standardised so-called ISHAGE protocol for enumeration of haematopoietic stem cells to enable comparison of clinical and laboratory data.

Methods and Results

In 25 control subjects, 65 patients with coronary artery disease (CAD; 40 stable CAD, 25 acute coronary syndrome/acute myocardial infarction (ACS)), EPC were quantified using the following approach: Whole blood was incubated with CD45, KDR, and CD34. The ISHAGE sequential strategy was used, and finally, CD45dimCD34+ cells were quantified for KDR. A minimum of 100 CD34+ events were collected. For comparison, CD45+CD34+ and CD45CD34+ were analysed simultaneously. The number of CD45dimCD34+KDR+ cells only were significantly higher in healthy controls compared to patients with CAD or ACS (p = 0.005 each, p<0.001 for trend). An inverse correlation of CD45dimCD34+KDR+ with disease activity (r = −0.475, p<0.001) was confirmed. Only CD45dimCD34+KDR+ correlated inversely with the number of diseased coronaries (r = −0.344; p<0.005). In a second study, a 4-week de-novo treatment of atorvastatin in stable CAD evoked an increase only of CD45dimCD34+KDR+ EPC (p<0.05). CD45+CD34+KDR+ and CD45CD34+KDR+ were indifferent between the three groups.

Conclusion

Our newly established protocol adopted from the standardised ISHAGE protocol achieved higher accuracy in EPC enumeration confirming previous findings with respect to the correlation of EPC with disease activity and the increase of EPC during statin therapy. The data of this study show the CD45dim fraction to harbour EPC.  相似文献   

16.

Background

Granulysin produced by cytolytic T cells directly contributes to immune defense against tuberculosis (TB). We investigated granulysin as a candidate immune marker for childhood and adolescent TB.

Methods

Peripheral blood mononuclear cells (PBMC) from children and adolescents (1–17 years) with active TB, latent TB infection (LTBI), nontuberculous mycobacteria (NTM) infection and from uninfected controls were isolated and restimulated in a 7-day restimulation assay. Intracellular staining was then performed to analyze antigen-specific induction of activation markers and cytotoxic proteins, notably, granulysin in CD4+ CD45RO+ memory T cells.

Results

CD4+ CD45RO+ T cells co-expressing granulysin with specificity for Mycobacterium tuberculosis (Mtb) were present in high frequency in TB-experienced children and adolescents. Proliferating memory T cells (CFSElowCD4+CD45RO+) were identified as main source of granulysin and these cells expressed both central and effector memory phenotype. PBMC from study participants after TB drug therapy revealed that granulysin-expressing CD4+ T cells are long-lived, and express several activation and cytotoxicity markers with a proportion of cells being interferon-gamma-positive. In addition, granulysin-expressing T cell lines showed cytolytic activity against Mtb-infected target cells.

Conclusions

Our data suggest granulysin expression by CD4+ memory T cells as candidate immune marker for TB infection, notably, in childhood and adolescence.  相似文献   

17.

Background

Human prostate basal cells expressing alpha-6 integrin (CD49fHi) and/or CD44 form prostaspheres in vitro. This functional trait is often correlated with stem/progenitor (S/P) activity, including the ability to self-renew and induce differentiated tubules in vivo. Antigenic profiles that distinguish tubule-initiating prostate stem cells (SCs) from progenitor cells (PCs) and mature luminal cells (LCs) with less regenerative potential are unknown.

Methodology/Principle Findings

Prostasphere assays and RT-PCR analysis was performed following FACS separation of total benign prostate cells based upon combinations of Epcam, CD44, and/or CD49f expression. Epithelial cell fractions were isolated, including Epcam+CD44+ and Epcam+CD44+CD49fHi basal cells that formed abundant spheres. When non-sphere-forming Epcam+CD44 cells were fractionated based upon CD49f expression, a distinct subpopulation (Epcam+CD44CD49fHi) was identified that possessed a basal profile similar to Epcam+CD44+CD49fHi sphere-forming cells (p63+ARLoPSA). Evaluation of tubule induction capability of fractionated cells was performed, in vivo, via a fully humanized prostate tissue regeneration assay. Non-sphere-forming Epcam+CD44 cells induced significantly more prostate tubular structures than Epcam+CD44+ sphere-forming cells. Further fractionation based upon CD49f co-expression identified Epcam+CD44CD49fHi (non-sphere-forming) basal cells with significantly increased tubule induction activity compared to Epcam+CD44CD49fLo (true) luminal cells.

Conclusions/Significance

Our data delineates antigenic profiles that functionally distinguish human prostate epithelial subpopulations, including putative SCs that display superior tubule initiation capability and induce differentiated ductal/acini structures, sphere-forming PCs with relatively decreased tubule initiation activity, and terminally differentiated LCs that lack both sphere–forming and tubule-initiation activity. The results clearly demonstrate that sphere-forming ability is not predictive of tubule-initiation activity. The subpopulations identified are of interest because they may play distinct roles as cells of origin in the development of prostatic diseases, including cancer.  相似文献   

18.

Background

Circulating CD34+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN) could target progenitor cell injury by Natural Killer (NK) cells, thereby limiting their availability for vascular repair.

Methodology/Principal Findings

We show that CD34+-derived Endothelial Colony Forming Cells (ECFC) can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34+ cells expressing FKN was identified as an independent variable inversely correlated to CD34+ progenitor cell count. We further showed that treatment of CD34+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression.

Conclusions

Our data highlights a novel mechanism by which FKN expression on CD34+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.  相似文献   

19.

Background

In contrast to intestinal CD4+ regulatory T cells (Tregs), the generation and function of immunomodulatory intestinal CD8+ T cells is less well defined. To dissect the immunologic mechanisms of CD8+ T cell function in the mucosa, reactivity against hemagglutinin (HA) expressed in intestinal epithelial cells of mice bearing a MHC class-I-restricted T-cell-receptor specific for HA was studied.

Methodology and Principal Findings

HA-specific CD8+ T cells were isolated from gut-associated tissues and phenotypically and functionally characterized for the expression of Foxp3+ and their suppressive capacity. We demonstrate that intestinal HA expression led to peripheral induction of HA-specific CD8+Foxp3+ T cells. Antigen-experienced CD8+ T cells in this transgenic mouse model suppressed the proliferation of CD8+ and CD4+ T cells in vitro. Gene expression analysis of suppressive HA-specific CD8+ T cells revealed a specific up-regulation of CD103, Nrp1, Tnfrsf9 and Pdcd1, molecules also expressed on CD4+ Treg subsets. Finally, gut-associated dendritic cells were able to induce HA-specific CD8+Foxp3+ T cells.

Conclusion and Significance

We demonstrate that gut specific antigen presentation is sufficient to induce CD8+ Tregs in vivo which may maintain intestinal homeostasis by down-modulating effector functions of T cells.  相似文献   

20.
Ohsugi T  Kumasaka T 《PloS one》2011,6(4):e18518

Background

Human T-cell leukemia virus type I (HTLV-1) can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL) as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice.

Principal Findings

By 24 months of age, Tax transgenic mice developed severe arthropathy with a cumulative incidence of 22.8%. The pathological findings of arthropathy in Tax transgenic mice were similar to those seen in human rheumatoid arthritis or mouse models of rheumatoid arthritis, with synovial proliferation and a positive rheumatoid factor. Before the onset of spontaneous arthropathy, young and old Tax transgenic mice were not sensitive to collagen and did not develop arthritis after immunization with type II collagen. The arthropathic Tax transgenic mice showed a significantly decreased proportion of splenic CD4+ T cells, whereas the proportion of splenic CD8+ T cells was increased. Regulatory T cells (CD4+CD25+Foxp3+) were significantly decreased and CD8+ T cells that expressed the chemokine receptor CCR4 (CD8+CCR4+) were significantly increased in arthropathic Tax transgenic mice. The expression of tax mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice.

Conclusions

Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble those in HAM/TSP patients rather than those in rheumatoid arthritis patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号