首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Summary Familial adenomatous polyposis (FAP), which includes familial polyposis coli (FPC) and the Gardner syndrome (GS), is a genetically determined premalignant disease of the colon inherited by a locus (APC) mapping within 5q15–q22. To elucidate the role of 5q loss in FAP tumorigenesis, we analysed 51 colorectal tumors and seven desmoids from 19 cases of FPC and five GS patients, as well as 15 sporadic colon cancers. RFLP analysis revealed a high incidence of allelic deletion in hereditary colon cancers as well as in sporadic colon cancers with a peak at the APC locus. APC loss resulted primarily from interstitial deletion or mitotic recombination. Combined tumor and pedigree analysis in a GS family revealed loss of normal 5q alleles in three tumors, including a desmoid tumor, which suggests the involvement of hemizygosity or homozygosity of the defective APC gene in colon carcinogenesis and, possibly, in extracolonic neoplasms associated with FAP.  相似文献   

2.
The Czech Republic has one of the highest incidences of colorectal cancer (CRC) in Europe. To evaluate whether sporadic CRCs in Czech patients have specific mutational profiles we analysed somatic genetic changes in known CRC genes (APC, KRAS, TP53, CTNNB1, MUTYH and BRAF, loss of heterozygosity (LOH) at the APC locus, microsatellite instability (MSI), and methylation of the MLH1 promoter) in 103 tumours from 102 individuals. The most frequently mutated gene was APC (68.9% of tumours), followed by KRAS (31.1%), TP53 (27.2%), BRAF (8.7%) and CTNNB1 (1.9%). Heterozygous germline MUTYH mutations in 2 patients were unlikely to contribute to the development of their CRCs. LOH at the APC locus was found in 34.3% of tumours, MSI in 24.3% and MLH1 methylation in 12.7%. Seven tumours (6.9%) were without any changes in the genes tested. The analysis yielded several findings possibly specific for the Czech cohort. Somatic APC mutations did not cluster in the mutation cluster region (MCR). Tumours with MSI but no MLH1 methylation showed earlier onset and more severe mutational profiles compared to MSI tumours with MLH1 methylation. TP53 mutations were predominantly located outside the hot spots, and transitions were underrepresented. Our analysis supports the observation that germline MUTYH mutations are rare in Czech individuals with sporadic CRCs. Our findings suggest the influence of specific ethnic genetic factors and/or lifestyle and dietary habits typical for the Czech population on the development of these cancers.  相似文献   

3.
APC is often cited as a prime example of a tumor suppressor gene. Truncating germline and somatic mutations (or, infrequently, allelic loss) occur in tumors in FAP (familial adenomatous polyposis). Most sporadic colorectal cancers also have two APC mutations. Clues from attenuated polyposis, missense germline variants with mild disease and the somatic mutation cluster region (codons 1,250-1,450) indicate, however, that APC mutations might not result in simple loss of protein function. We have found that FAP patients with germline APC mutations within a small region (codons 1,194-1,392 at most) mainly show allelic loss in their colorectal adenomas, in contrast to other FAP patients, whose 'second hits' tend to occur by truncating mutations in the mutation cluster region. Our results indicate that different APC mutations provide cells with different selective advantages, with mutations close to codon 1,300 providing the greatest advantage. Allelic loss is selected strongly in cells with one mutation near codon 1,300. A different germline-somatic APC mutation association exists in FAP desmoids. APC is not, therefore, a classical tumor suppressor. Our findings also indicate a new mechanism for disease severity: if a broader spectrum of mutations is selected in tumors, the somatic mutation rate is effectively higher and more tumors grow.  相似文献   

4.
Two families with autosomal dominantly inherited desmoid tumors have recently been shown to have germline mutations at the 3' end of the APC gene. We subsequently identified an Amish family with autosomal dominantly inherited desmoid tumors. Genetic analysis performed on one family member, a 47-year-old man with multiple desmoid tumors and no colon polyps, revealed a protein truncating mutation in the middle of the APC gene. The truncating mutation is the result of a 337-bp insertion of an Alu I sequence into codon 1526 of the APC gene. The presence of a poly(A) tail at the 3' end of the insertion suggests that the Alu I sequence was inserted by a retrotranspositional event. Germline insertions of Alu I sequences have occasionally been reported to cause other genetic diseases including type I neurofibromatosis, hereditary site-specific breast cancer (BRCA2), and hemophilia B. However, this is the first report of a germline mutation of the APC gene resulting from an Alu I insertion.  相似文献   

5.
Penile squamous cell carcinoma is a rare disease, in which somatic genetic aberrations have yet to be characterized. We hypothesized that gene copy aberrations might correlate with human papillomavirus status and clinico-pathological features. We sought to determine the spectrum of gene copy number aberrations in a large series of PSCCs and to define their correlations with human papillomavirus, histopathological subtype, and tumor grade, stage and lymph node status. Seventy formalin-fixed, paraffin embedded penile squamous cell carcinomas were centrally reviewed by expert uropathologists. DNA was extracted from micro-dissected samples, subjected to PCR-based human papillomavirus assessment and genotyping (INNO-LiPA human papillomavirus Genotyping Extra Assay) and microarray-based comparative genomic hybridization using a 32K Bacterial Artificial Chromosome array platform. Sixty-four samples yielded interpretable results. Recurrent gains were observed in chromosomes 1p13.3-q44 (88%), 3p12.3-q29 (86%), 5p15.33-p11 (67%) and 8p12-q24.3 (84%). Amplifications of 5p15.33-p11 and 11p14.1-p12 were found in seven (11%) and four (6%) cases, respectively. Losses were observed in chromosomes 2q33-q37.3 (86%), 3p26.3-q11.1 (83%) and 11q12.2-q25 (81%). Although many losses and gains were similar throughout the cohort, there were small significant differences observed at specific loci, between human papillomavirus positive and negative tumors, between tumor types, and tumor grade and nodal status. These results demonstrate that despite the diversity of genetic aberrations in penile squamous cell carcinomas, there are significant correlations between the clinico-pathological data and the genetic changes that may play a role in disease natural history and progression and highlight potential driver genes, which may feature in molecular pathways for existing therapeutic agents.  相似文献   

6.
Matched normal/tumor DNA pairs from sporadic colon carcinoma patients were examined for chromosome 5 allele loss using a probe for a functional gene (glucocorticoid receptor = GRL) locus. This locus maps (5q11-q13) close to one of two alternative sites recently reported for a constitutional deletion in a familial adenomatous polyposis (FAP) patient. Tumor-specific allele loss of at least 27% at GRL supports the hypothesis that both hereditary and sporadic forms of colon cancer result from mutations of the same gene. The proximity of the GRL locus to the region of 5q affected in FAP and the observed tumor-specific allele loss at this locus suggest that further research is needed regarding whether genetic alterations in the glucocorticoid receptor may be associated with colon carcinogenesis.  相似文献   

7.
8.
Various genetic loci harboring oncogenes, tumor suppressor genes, and genes for calcium receptors have been implicated in the development of parathyroid tumors. We have carried out loss of heterozygosity (LOH) studies in chromosomes 1p, 1q, 3q, 6q, 11q, 13q, 15q, and X in a total of 89 benign parathyroid tumors. Of these, 28 were sporadic parathyroid adenomas from patients with no family history of the disease, 41 were secondary parathyroid tumors, 5 were from patients with a history of previous irradiation to the neck, 12 were from patients with a family history of hyperparathyroidism, and 3 were parathyroid tumors related to multiple endocrine neoplasia type 1 (MEN1). In addition, we determined the chromosomal localization of a second putative calcium-sensing receptor, CaS, for inclusion in the LOH studies. Based on analysis of somatic cell hybrids and fluorescent in situ hybridization to metaphase chromsomes, the gene for CaS was mapped to chromosomal region 2q21-q22. The following results were obtained from the LOH studies: (1) out of the 24 tumors that showed LOH, only 4 had more than one chromosomal region involved, (2) in the tumours from uremic patients, LOH of chromosome 3q was detected in a subset of the tumors, (3) LOH of the MEN1 region at 11q13 was the most common abnormality found in both MEN1-related and sporadic parathyroid tumours but was not a feature of the other forms of parathyroid tumors, (4) LOH in 1p and 6q was not as frequent as previously reported, and (5) tumor suppressor genes in 1q and X might have played a role, particularly on the X chromosome, in the case of familial parathyroid adenomas. We therefore conclude that the tumorigenesis of familial, sporadic, and uremic hyperparathyroidism involves different genetic triggers in a non-progressive pattern. Received: 28 October 1996 / Revised: 16 November 1996  相似文献   

9.
Kim IJ  Kim K  Kang HC  Jang SG  Park JG 《Genetic testing》2008,12(2):295-298
The adenomatous polyposis coli (APC), which is the susceptible gene for familial adenomatous polyposis (FAP) and sporadic colorectal cancer, spans 15 exons. The open reading frame of APC is 8529 bp, which encodes 2843 amino acids. Conventional genetic screening involves extensive time as well as high cost and labor. Thus, we developed a novel APC ready-to-use plate for high-throughput mutational analysis by denaturing high performance liquid chromatography (DHPLC). To prepare the ready-to-use APC plate, all 38 primer pairs and PCR mixtures were aliquoted into individual wells of a 96-well plate, and frozen at -20 degrees C until use. All 38 PCR primers were designed to be amplified at the same temperature (52 degrees C). We examined a total of 27 FAP patient samples with APC germline mutations (17 for multiple bp deletions, 1 for 1 bp deletion, 9 for nonsense mutations) and 50 APC-negative noncarriers. All 17 multiple bp deletion mutations were detected during the initial 50 degrees C running analysis and thus ruled out for further analyses. All other mutations were clearly detected under specific optimized conditions. More than 50% of the APC germline mutations were multiple base pair deletions and efficiently selected by omitting time-consuming partial denaturing conditions.  相似文献   

10.
Background

Familial adenomatous polyposis (known also as classical or severe FAP) is a rare autosomal dominant colorectal cancer predisposition syndrome, characterized by the presence of hundreds to thousands of adenomatous polyps in the colon and rectum from an early age. In the absence of prophylactic surgery, colorectal cancer (CRC) is the inevitable consequence of FAP. The vast majority of FAP is caused by germline mutations in the adenomatous polyposis coli (APC) tumor suppressor gene (5q21). To date, most of the germline mutations in classical FAP result in truncation of the APC protein and 60% are mainly located within exon 15.

Material and methods

In this first nationwide study, we investigated the clinical and genetic features of 52 unrelated Algerian FAP families. We screened by PCR-direct sequencing the entire exon 15 of APC gene in 50 families and two families have been analyzed by NGS using a cancer panel of 30 hereditary cancer genes.

Results

Among 52 FAP index cases, 36 had 100 or more than 100 polyps, 37 had strong family history of FAP, 5 developed desmoids tumors, 15 had extra colonic manifestations and 21 had colorectal cancer. We detected 13 distinct germline mutations in 17 FAP families. Interestingly, 4 novel APC germline pathogenic variants never described before have been identified in our study.

Conclusions

The accumulating knowledge about the prevalence and nature of APC variants in Algerian population will contribute in the near future to the implementation of genetic testing and counseling for FAP patients.

  相似文献   

11.
We analyzed nine multigenerational families with ascertained affective spectrum disorders in northern Sweden's geographically isolated population of Vasterbotten. This northern Swedish population, which originated from a limited number of early settlers approximately 8,000 years ago, is genetically more homogeneous than outbred populations. In a genomewide linkage analysis, we identified three chromosomal loci with multipoint LOD scores (MPLOD) >/=2 at 9q31.1-q34.1 (MPLOD 3.24), 6q22.2-q24.2 (MPLOD 2.48), and 2q33-q36 (MPLOD 2.26) under a recessive affected-only model. Follow-up genotyping with application of a 2-cM density simple-tandem-repeat (STR) map confirmed linkage at 9q31.1-q34.1 (MPLOD 3.22), 6q23-q24 (MPLOD 3.25), and 2q33-q36 (MPLOD 2.2). In an initial analysis aimed at identification of the underlying susceptibility genes, we focused our attention on the 9q locus. We fine mapped this region at a 200-kb STR density, with the result of an MPLOD of 3.70. Genealogical studies showed that three families linked to chromosome 9q descended from common founder couples approximately 10 generations ago. In this approximately 10-generation pedigree, a common ancestral haplotype was inherited by the patients, which reduced the 9q candidate region to 1.6 Mb. Further, the shared haplotype was observed in 4.2% of patients with bipolar disorder with alternating episodes of depression and mania, but it was not observed in control individuals in a patient-control sample from the Vasterbotten isolate. These results suggest a susceptibility locus on 9q31-q33 for affective disorder in this common ancestral region.  相似文献   

12.
Relationships between adenomatous polyposis coli (APC) mutations, BRAF V600E mutations, and the CpG island methylator phenotype (CIMP) in colon cancer have not been explored. In addition, controversies exist about the proportion of tumors with APC mutations in the mutation cluster region (MCR); how commonly APC, Ki-ras, and p53 mutations occur in the same tumor; and whether APC mutations occur in sporadic microsatellite-unstable tumors. The APC gene was therefore sequenced in 90 colonic adenocarcinomas previously evaluated for CIMP, microsatellite instability, BRAF, Ki-ras, and p53. APC mutations were inversely related to BRAF mutations (P = 0.0003) and CIMP (P = 0.02) and directly related to p53 and Ki-ras mutations (P = 0.04). Slightly more than half of APC mutations occurred outside of the MCR, and frameshift mutations were more likely than nonsense mutations to occur in the MCR (21 of 28 versus 12 of 40, P = 0.0003). APC mutations were found in sporadic microsatellite-unstable tumors and were more likely to be frameshifts in short nucleotide repeats (P = 0.007). The occurrence of APC, Ki-ras, and p53 mutations together in the same tumor was uncommon (11.1%). In conclusion, an analysis restricted to the MCR will miss more than half of APC mutations as well as mischaracterize their mutational spectrum. The conventional wisdom that most colon cancers contain APC, Ki-ras, and p53 mutations is incorrect. Microsatellite instability may precede acquisition of APC mutations in sporadic microsatellite-unstable tumors. The relationships of APC mutations to other genetic and epigenetic alterations add to the already impressive genetic heterogeneity of colon cancer.  相似文献   

13.
Breast cancers (BCs) of the luminal B subtype are estrogen receptor-positive (ER+), highly proliferative, resistant to standard therapies and have a poor prognosis. To better understand this subtype we compared DNA copy number aberrations (CNAs), DNA promoter methylation, gene expression profiles, and somatic mutations in nine selected genes, in 32 luminal B tumors with those observed in 156 BCs of the other molecular subtypes. Frequent CNAs included 8p11-p12 and 11q13.1-q13.2 amplifications, 7q11.22-q34, 8q21.12-q24.23, 12p12.3-p13.1, 12q13.11-q24.11, 14q21.1-q23.1, 17q11.1-q25.1, 20q11.23-q13.33 gains and 6q14.1-q24.2, 9p21.3-p24,3, 9q21.2, 18p11.31-p11.32 losses. A total of 237 and 101 luminal B-specific candidate oncogenes and tumor suppressor genes (TSGs) presented a deregulated expression in relation with their CNAs, including 11 genes previously reported associated with endocrine resistance. Interestingly, 88% of the potential TSGs are located within chromosome arm 6q, and seven candidate oncogenes are potential therapeutic targets. A total of 100 candidate oncogenes were validated in a public series of 5,765 BCs and the overexpression of 67 of these was associated with poor survival in luminal tumors. Twenty-four genes presented a deregulated expression in relation with a high DNA methylation level. FOXO3, PIK3CA and TP53 were the most frequent mutated genes among the nine tested. In a meta-analysis of next-generation sequencing data in 875 BCs, KCNB2 mutations were associated with luminal B cases while candidate TSGs MDN1 (6q15) and UTRN (6q24), were mutated in this subtype. In conclusion, we have reported luminal B candidate genes that may play a role in the development and/or hormone resistance of this aggressive subtype.  相似文献   

14.
Hereditary artifacts in BRCA1 gene have a significant contributory role in familial cases of breast cancer. However, its germline mutational penetrance in sporadic breast cancer cases with respect to Pakistani population has not yet been very well defined. This study was designed to assess the contributory role of germline mutations of this gene in sporadic cases of breast cancer. 150 cases of unilateral breast cancer patients, with no prior family history of breast cancer and no other disorders or diseases in general with age range 35–75 yrs, were included in this study.Mutational analysis for hot spots on Exon 2, 3 and 13 of BRCA1 was done by using Single Strand Conformational Polymorphism (SSCP). Sequence analysis revealed five variants (missense) and one novel splice site mutation at exon 13. No germline mutation was observed on the remaining exons with respect sporadic breast cancer cases in Pakistani population. A vast majority of breast cancer cases are sporadic; the present study may be helpful for designing a better genetic screening tool for germline BRCA mutations in sporadic breast cancer patients of Pakistani population. Further studies involving a screening of entire coding region of BRCA1 is required to explore the merits of genetic diagnosis and counseling in breast cancer patients.  相似文献   

15.
Germline mutations of the adenomatous polyposis coli ( APC) gene cause familial adenomatous polyposis (FAP), an autosomal, dominantly inherited disease that predisposes patients to colorectal cancer. The APC gene is composed of 15 coding exons and encodes an open reading frame of 8.5 kb. The 3' 6.5 kb of the APCopen reading frame is encoded by a single exon, exon 15. Most identified APC mutations are at the 5' half of the APC open reading frame and are nucleotide substitutions and small deletions or insertions that result in truncation of the APC protein. Very few well-characterized gross alterations of APC have been reported. Patients with FAP typically develop hundreds to thousands of colorectal tumors beginning in their adolescence. A subgroup of patients with FAP who develop fewer tumors at an older age have what is called attenuated FAP (AFAP). Accumulating evidence indicates that patients carrying germline APC mutations in the first four coding exons, in the alternatively spliced region of exon 9, or in the 3' half of the coding region usually develop AFAP. We characterized two germline APC alterations that deleted the entire APC exon 15 as the result of 56-kb and 73-kb deletions at the APC locus. A surprising finding was that one proband had the typical FAP phenotype, whereas the other had a phenotype consistent with that of AFAP.  相似文献   

16.

Background

Malignant fibrous histiocytomas (MFHs), or undifferentiated pleomorphic sarcomas, are in general high-grade tumours with extensive chromosomal aberrations. In order to identify recurrent chromosomal regions of gain and loss, as well as novel gene targets of potential importance for MFH development and/or progression, we have analysed DNA copy number changes in 33 MFHs using microarray-based comparative genomic hybridisation (array CGH).

Principal findings

In general, the tumours showed numerous gains and losses of large chromosomal regions. The most frequent minimal recurrent regions of gain were 1p33-p32.3, 1p31.3-p31.2 and 1p21.3 (all gained in 58% of the samples), as well as 1q21.2-q21.3 and 20q13.2 (both 55%). The most frequent minimal recurrent regions of loss were 10q25.3-q26.11, 13q13.3-q14.2 and 13q14.3-q21.1 (all lost in 64% of the samples), as well as 2q36.3-q37.2 (61%), 1q41 (55%) and 16q12.1-q12.2 (52%). Statistical analyses revealed that gain of 1p33-p32.3 and 1p21.3 was significantly associated with better patient survival (P = 0.021 and 0.046, respectively). Comparison with similar array CGH data from 44 leiomyosarcomas identified seven chromosomal regions; 1p36.32-p35.2, 1p21.3-p21.1, 1q32.1-q42.13, 2q14.1-q22.2, 4q33-q34.3, 6p25.1-p21.32 and 7p22.3-p13, which were significantly different in copy number between the MFHs and leiomyosarcomas.

Conclusions

A number of recurrent regions of gain and loss have been identified, some of which were associated with better patient survival. Several specific chromosomal regions with significant differences in copy number between MFHs and leiomyosarcomas were identified, and these aberrations may be used as additional tools for the differential diagnosis of MFHs and leiomyosarcomas.  相似文献   

17.
Congenital generalized hypertrichosis terminalis (CGHT) is a rare condition characterized by universal excessive growth of pigmented terminal hairs and often accompanied with gingival hyperplasia. In the present study, we describe three Han Chinese families with autosomal-dominant CGHT and a sporadic case with extreme CGHT and gingival hyperplasia. We first did a genome-wide linkage scan in a large four-generation family. Our parametric multipoint linkage analysis revealed a genetic locus for CGHT on chromosome 17q24.2-q24.3. Further two-point linkage and haplotyping with microsatellite markers from the same chromosome region confirmed the genetic mapping and showed in all the families a microdeletion within the critical region that was present in all affected individuals but not in unaffected family members. We then carried out copy-number analysis with the Affymetrix Genome-Wide Human SNP Array 6.0 and detected genomic microdeletions of different sizes and with different breakpoints in the three families. We validated these microdeletions by real-time quantitative PCR and confirmed their perfect cosegregation with the disease phenotype in the three families. In the sporadic case, however, we found a de novo microduplication. Two-color interphase FISH analysis demonstrated that the duplication was inverted. These copy-number variations (CNVs) shared a common genomic region in which CNV is not reported in the public database and was not detected in our 434 unrelated Han Chinese normal controls. Thus, pathogenic copy-number mutations on 17q24.2-q24.3 are responsible for CGHT with or without gingival hyperplasia. Our work identifies CGHT as a genomic disorder.  相似文献   

18.
Inherited mutations of the APC gene predispose carriers to multiple adenomatous polyps of the colon and rectum and to colorectal cancer. Mutations located at the extreme 5' end of the APC gene, however, are associated with a less severe disease known as attenuated adenomatous polyposis coli (AAPC). Many individuals with AAPC develop relatively few colorectal polyps but are still at high risk for colorectal cancer. We report here the identification of a 5' APC germline mutation in five separately ascertained AAPC families from Newfoundland, Canada. This disease-causing mutation is a single basepair change (G to A) in the splice-acceptor region of APC intron 3 that creates a mutant RNA without exon 4 of APC. The observation of the same APC mutation in five families from the same geographic area demonstrates a founder effect. Furthermore, the identification of this germline mutation strengthens the correlation between the 5' location of an APC disease-causing mutation and the attenuated polyposis phenotype.  相似文献   

19.
To understand genetic and epigenetic pathways in Wilms' tumors, we carried out a genome scan for loss of heterozygosity (LOH) using Affymetrix 10K single nucleotide polymorphism (SNP) chips and supplemented the data with karyotype information. To score loss of imprinting (LOI) of the IGF2 gene, we assessed DNA methylation of the H19 5' differentially methylated region (DMR). Few chromosomal regions other than band 11p13 (WT1) were lost in Wilms' tumors from Denys-Drash and Wilms' tumor-aniridia syndromes, whereas sporadic Wilms' tumors showed LOH of several regions, most frequently 11p15 but also 1p, 4q, 7p, 11q, 14q, 16q, and 17p. LOI was common in the sporadic Wilms' tumors but absent in the syndromic cases. The SNP chips identified novel centers of LOH in the sporadic tumors, including a 2.4-Mb minimal region on chromosome 4q24-q25. Losses of chromosomes 1p, 14q, 16q, and 17p were more common in tumors presenting at an advanced stage; 11p15 LOH was seen at all stages, whereas LOI was associated with early-stage presentation. Wilms' tumors with LOI often completely lacked LOH in the genome-wide analysis, and in some tumors with concomitant 16q LOH and LOI, the loss of chromosome 16q was mosaic, whereas the H19 DMR methylation was complete. These findings confirm molecular differences between sporadic and syndromic Wilms' tumors, define regions of recurrent LOH, and indicate that gain of methylation at the H19 DMR is an early event in Wilms' tumorigenesis that is independent of chromosomal losses. The data further suggest a biological difference between sporadic Wilms' tumors with and without LOI.  相似文献   

20.
Generation of the functionally pleiotropic members of the endothelin vasoactive peptide family is critically catalyzed by unique type II metalloproteases, termed endothelin converting enzymes (ECE). Isolation of human ECE-2 (EC 3.4.24.71) cDNAs revealed deduced open reading frames of 787 and 765 amino acids with approximately 60% identity with human ECE-1. Characterization of mRNA variants revealed mRNA structural diversity at the 5'-terminus. Two mRNA species exist containing distinct first and second exons. Furthermore, in one of these species, an in-frame deletion of the intracytoplasmic domain removed 29 amino acids. Because of the previously reported human genetic diseases ascribed to germline mutations of member genes of the endothelin family, ECE2 was localized in human chromosomes with fluorescence in situ hybridization and radiation hybrid mapping to 3q28-q29 and SHGC-20171/D3S1571, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号