首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anthropogenic impacts from urbanization, deforestation, and agriculture have degraded the riparian margins of waterways worldwide. In New Zealand, such impacts have caused changes in native vegetation, enhanced invasion by exotic grasses, and altered river bank morphology. One consequence has been a great reduction in obligate spawning habitat of a diadromous fish, Galaxias maculatus. Juvenile G. maculatus comprise a culturally important fishery that has been considerably reduced over recent decades. Rehabilitation of riparian vegetation needed for spawning is relatively straightforward, but slow. We hypothesized that artificial spawning habitats could accelerate restoration of fish egg production by creating an environment that would support at least the same density and survival of eggs as non‐impacted vegetation. We tested three artificial devices (straw bales, straw tubes, and moss tubes) in degraded and intact sites. Eggs were laid in all of these with numbers and survival usually exceeding that in riparian grasses. Where habitat was degraded, artificial spawning habitats yielded up to 10,000 eggs compared to none in nearby natural spawning habitat. The ground‐level environment of artificial habitat was similar to that of intact vegetation in buffering ambient temperature and humidity fluctuations. Crucial properties of the artificial habitats were (1) shelter to provide shade and hold moisture; (2) accessibility to allow adult fish to deposit and fertilize eggs; and (3) robustness to provide reliable surfaces and protection for the eggs during their development. We show that artificial spawning habitats are a viable short‐term alternative to rehabilitating spawning habitat while legacy effects abate and riparian vegetation recovers.  相似文献   

2.
Solar ultraviolet-B (UVB) radiation has deleterious effects on plant-dwelling mites. We assessed the biological effects of UVB radiation on the eggs of the twospotted spider mite, Tetranychus urticae Koch, under both near ambient (UV+) and UV-attenuated (UV−) conditions from spring to autumn and compared them to the effects of temperature and humidity. The ambient daily UVB irradiance increased from January to August and then decreased rapidly until December, whereas egg hatchability under UV+ was lowest in April (10.7%) and increased almost linearly until October (74.9–92.3%). In contrast, hatchability under UV− was consistently high (96.2–99.8%) through all seasons. For UV+, the stepwise multiple linear regression analysis supported the negative correlation of hatchability with cumulative UVB irradiance during egg periods (cumulative dose), but did not support that with the mean daily UVB irradiance (dose rate), suggesting that UVB-induced mortality in T. urticae eggs is cumulative dose dependent rather than dose rate dependent. The high mortality in April may have reflected the slower development caused by the relatively lower temperature and higher UVB radiation, increasing the cumulative dose, while the low mortality in October may have reflected the faster development caused by the relatively higher temperature and lower UVB radiation, decreasing the cumulative dose.  相似文献   

3.
Ultraviolet-B radiation (UVB) is a ubiquitous stressor with negative effects on many aquatic organisms. In amphibians, ambient levels of UVB can result in impaired growth, slowed development, malformations, altered behavior and mortality. UVB can also interact with other environmental stressors to amplify these negative effects on individuals. In outdoor mesocosm and laboratory experiments we studied potential synergistic effects of UVB, a pathogenic fungus, Batrachochytrium dendrobatidis (Bd), and varying temperatures on larval Cascades frogs (Rana cascadae). First, we compared survivorship, growth and development in two mesocosm experiments with UVB- and Bd-exposure treatments. We then investigated the effects of UVB on larvae in the laboratory under two temperature regimes, monitoring survival and behavior. We found reduced survival of R. cascadae larvae with exposure to UVB radiation in all experiments. In the mesocosm experiments, growth and development were not affected in either treatment, and no effect of Bd was found. In the laboratory experiment, larvae exposed to UVB demonstrated decreased activity levels. We also found a trend towards reduced survival when UVB and cold temperatures were combined. Our results show that amphibian larvae can suffer both lethal and sublethal effects when exposed to UVB radiation.  相似文献   

4.
Terrestrial egg development is advantageous for the amphidromous fish Galaxias maculatus because it increases access to oxygen, increases incubation temperatures, and reduces aquatic predation. The characteristics of New Zealand's riparian vegetation have changed considerably since colonial times from native vegetation to exotic grasses, with potential effects on the spawning dynamics of fish. Here, we used a series of experiments to test preferences of G. maculatus for egg laying in combinations of a native sedge and rush, and two exotic grasses. In laboratory experiments, G. maculatus spawned in all available habitats with no preference for native over exotic vegetation. Egg survival did not differ between the vegetative habitats, but in a treatment where only river stones were available, eggs were laid but they dehydrated and died. In a field experiment, there was no evidence for a preference for spawning in native vegetation, and no association between a “key” feature of vegetation—tiller density—and the number of eggs laid. The microclimate beneath dense vegetation in experimental treatments was more constant than ambient conditions with few extreme temperatures and low humidities. Given the readiness of G. maculatus to spawn in exotic vegetation, there appears to be no benefit in restoring native vegetation to enhance egg laying or survival of these taxa.  相似文献   

5.
Riparian vegetation has been compromised worldwide by anthropogenic stressors, including urbanization and livestock grazing. In New Zealand, one consequence has been a reduction in the obligate riparian spawning habitat of Galaxias maculatus. This diadromous species forms the basis of an important fishery where juveniles are caught as they migrate into freshwater. Spawning success of G. maculatus is closely associated with the nature of available riparian habitat. We used a field experiment in a rural stream to test whether livestock grazing limits egg production and whether there is a lag in increased egg production after protection from grazing because of the recovery time of riparian vegetation. In a separate experiment in an urban stream we tested whether improved riparian management can increase egg production. Livestock exclusion produced an immediate and long‐lasting increase in the height and density of riparian vegetation with reduced fluctuations in the ground‐level physical environment, and positive changes to the density and survival of eggs. After 4 years, egg densities in exclosures were 400 times greater than in grazed controls and egg survival had doubled. Mowing riparian vegetation 2 months prior to spawning reduced egg densities by 75% and survival by 25%. Our experiments showed that altering grazing and mowing in spawning sites produced dense riparian vegetation, that this improved the microsite environment and resulted in greatly increased egg deposition and survival over several years. This clearly indicates that the single most effective step in rehabilitating G. maculatus spawning habitat is a simple reduction in grazing/mowing pressure .  相似文献   

6.
Damaging effects of UVB in conjunction with other stressors associated with global change are well‐established, with many studies focused on vulnerable early life stages and immediate effects (e.g., mortality, developmental abnormalities). However, for organisms with complex life cycles, experiences at one life stage can have carry‐over effects on later life stages, such that sublethal effects may mediate later vulnerability to further stress. Here, we exposed embryos in benthic egg masses of the New Zealand intertidal gastropod Siphonaria australis to treatments of either periodic stress (e.g., elevated UVB, salinity, and water temperature mimicking tidepool conditions in which egg masses are commonly found during summer) or control conditions (low UVB, ambient salinity, and water temperatures). Although there was high mortality from stressed egg masses, 24% of larvae hatched successfully. We then exposed the hatching larvae from both egg mass treatments to different combinations of water temperature (15 or 20 °C) and light (high UVB or shade) 12 h per day for 10 days. The most stressful larval conditions of 20 °C/high UVB resulted in low survival and stunted growth. Carry‐over effects on survival were apparent for shaded larvae exposed to elevated temperature, where those from stressed egg masses had 1.8× higher mortality than those from control egg masses. Shaded larvae were also larger and had longer velar cilia if they were from control egg masses, independent of larval temperature. These results demonstrate that previous experience of environmental stress can influence vulnerability of later life stages to further stress, and that focus on a single life stage will underestimate cumulative effects of agents of global change.  相似文献   

7.
Measurements of expiration temperatures were carried out under different climatic conditions. In one series of experiments the ambient air temperature was varied, in another the relative humidity of the ambient air. The temperatures of the ambient air ranged between –5°C and 30°C and the relative humidity between 10% and 90%. The results reveal a high variability of the expiration temperatures, when the ambient air temperature is changed, and almost constant expiration temperatures, when the relative humidity is altered but the ambient air temperature is kept constant. Nasal expiration temperatures are more sensitive to changes of the meteorological parameters than oral expiration temperatures.  相似文献   

8.
Manfredi MT 《Parassitologia》2006,48(3):397-401
The development and survival of free-living stages of gastro-intestinal nematodes of small ruminants are influenced by several abiotic and biotic factors. Within the abiotic factors, most important are the environmental temperature and humidity. They regulate the development of larvae from eggs dispersed on the pasture by the animals faeces. Each parasite species that infect ruminants requires a different time to development, depending on temperature and humidity. Among trichostrongylids, Ostertagia, Teladorsagia and Nematodirus show a strong adaptation to low temperatures. Nematodirus larvae are able to survive to winter inside the egg shell. Temperature and humidity influence the distribution and survival of larvae on pasture. The larval third stage can migrate from faeces to pasture vegetation and they accumulate at the basis of vegetation where stay during the day or in the soil to avoid the desiccation. The forage species affects the migration of larvae on herbage too. Many biological factors contribute to disperse the larvae on the pasture. Dung burying beetles, coprophagous beetles and earthworms can greatly reduce the larvae of some trichostrongylids on pasture. They contribute to the spread of the faecal material on the pasture and allow the larval death as a consequence of drying.  相似文献   

9.
Habitat fragmentation may change local climatic conditions leading to altered selection regimes for life-history traits in small ectotherms, including several insects. We investigated temperature-related performance in terms of fitness among populations of the woodland butterfly Pararge aegeria (L.) originating from populations of a closed, continuous woodland landscape versus populations of an open, highly fragmented agricultural landscape in central Belgium. Female fecundity and longevity were evaluated in a temperature-gradient experiment. As predicted, females of woodland landscape origin reached higher maximum daily fecundity and lifetime number of eggs than did agricultural landscape females at low ambient temperatures, but this reversed at high ambient temperature. Egg weight decreased with temperature, and eggs of woodland butterflies were smaller. Contrary to what is generally assumed, remaining thorax mass was a better predictor of lifetime reproductive output than was abdomen mass. Since we used the F2 generation from wild-caught females reared under common garden conditions, the observed effects are likely to rely on intrinsic, heritable variation. Our results suggest that differential selection regimes associated with different landscapes intervene by intraspecific variation in the response of a butterfly to variation in ambient temperature, and may thus be helpful when making predictions of future impacts on how wild populations respond to environmental conditions under a global change scenario, with increasing temperatures and fragmented landscapes.  相似文献   

10.
The influence of temperature and humidity on the survival and development of Toxocara canis eggs in an in vitro model system was investigated. Two soil samples were inoculated with T. canis eggs and maintained at 3% and 50% humidity and temperatures of 19-24 degrees C. Nine soil samples were inoculated with T. canis eggs of which three samples were kept at 4 degrees C with humidities at 3%, 15%, and 30%; three were maintained at 21 degrees C and three more were incubated at 34 degrees C, and at the same three humidity levels. Samples were monitored every 7 days for a total of 2 months, for the presence and development of eggs. With increasing temperature, the number of eggs undergoing development increased (P<0.01); the number of deformed eggs decreased, the number of infective eggs increased (P<0.01), and egg maturation was accelerated. A decrease in the survival of infective eggs occurred at 34 degrees C. An increase in humidity produced a rise in the number of developed eggs at all three temperatures (P<0.01). This study suggests that elevated temperatures accelerated the development as well as the degradation of eggs of T. canis, whereas the range in humidity was directly correlated with egg development.  相似文献   

11.
Combined effects of co-occurring global climate changes on ecosystem responses are generally poorly understood. Here, we present results from a 2-year field experiment in a Carex fen ecosystem on the southernmost tip of South America, where we examined the effects of solar ultraviolet B (UVB, 280–315 nm) and warming on above- and belowground plant production, C : N ratios, decomposition rates and earthworm population sizes. Solar UVB radiation was manipulated using transparent plastic filter films to create a near-ambient (90% of ambient UVB) or a reduced solar UVB treatment (15% of ambient UVB). The warming treatment was imposed passively by wrapping the same filter material around the plots resulting in a mean air and soil temperature increase of about 1.2 °C. Aboveground plant production was not affected by warming, and marginally reduced at near-ambient UVB only in the second season. Aboveground plant biomass also tended to have a lower C : N ratio under near-ambient UVB and was differently affected at the two temperatures (marginal UVB × temperature interaction). Leaf decomposition of one dominant sedge species ( Carex curta ) tended to be faster at near-ambient UVB than at reduced UVB. Leaf decomposition of a codominant species ( Carex decidua ) was significantly faster at near-ambient UVB; root decomposition of this species tended to be lower at increased temperature and interacted with UVB. We found, for the first time in a field experiment that epigeic earthworm density and biomass was 36% decreased by warming but remained unaffected by UVB radiation. Our results show that present-day solar UVB radiation and modest warming can adversely affect ecosystem functioning and engineers of this fen. However, results on plant biomass production also showed that treatment manipulations of co-occurring global change factors can be overridden by the local climatic situation in a given study year.  相似文献   

12.
Edaphic factors such as soil temperature and moisture influence soil-dwelling insects, whose most vulnerable stages typically are eggs and young larvae. In this study, the survival of eggs and first-instar larvae of the cabbage maggot, Delia radicum L., was measured under laboratory conditions after exposure to a range of soil temperatures and moistures. When eggs were exposed to constant temperature (20-29°C) and humidity (5-200% [wt:wt]), temperature had no significant effect on survival, whereas humidity <25% [wt:wt] caused egg mortality. The gradual exposure of eggs to high temperatures resulted in low mortality below 33°C, but <5% of eggs survived at 40°C. When first-instar larvae were exposed to constant temperature (17-29°C) and humidity (5-100% [wt:wt]), both factors as well as their interaction had a significant effect on larval survival, which was nil at 5% (wt:wt) for all temperatures but increased from 21.9 to 42.8% at 17°C and from 34.1 to 55.0% at 29°C, for soil moisture contents of 15% and 100% (wt:wt), respectively. Eggs of D. radicum are resistant to low soil moisture and high temperature conditions. Larval survival tends to increase with an increase in soil temperature and moisture. It is suggested that soil temperature be integrated into insect development simulation models instead of air temperature, to build more effective models for cabbage maggot management.  相似文献   

13.
We examined the effects of UVB radiation on hatching success of eggs, survival of various naupliar and copepodite stages, and feeding and egg production of adult females of the brackish-water copepod, Sinocalanus tenellus, by exposure to varying doses of UVB irradiance in the laboratory. Artificial UVB radiation resulted in an increased mortality of eggs, nauplii and copepodites with increasing UVB doses. UVB induced damage was stage-specific with eggs being most susceptible (LD50= 4.1 kJ m–2 ) and adult females being least susceptible (LD50= 16.7 kJ m–2). Effects on feeding and egg production of adult females were significantly evident at UVB doses higher than 11.0 kJ m–2 and 7.0 kJ m–2, respectively. We also examined the photorepair response of eggs and various developmental stages in simultaneous irradiation of UVB and enhanced PAR. With enhanced PAR there was a considerable recovery against UVB damage, being higher for younger animals than older ones. In nature, however, solar UVB radiation may rarely cause appreciable damage to S. tenellus population due to optically high attenuation properties of their habitat waters.  相似文献   

14.
Solar radiation is an important driver of animal coloration, not only because of the effects of coloration on body temperature but also because coloration may protect from the deleterious effects of UV radiation. Indeed, dark coloration may protect from UV, but may increase the risk of overheating. In addition, the effect of coloration on thermoregulation should change with egg size, as smaller eggs have higher surface‐volume ratios and greater convective coefficients than larger eggs, so that small eggs can dissipate heat quickly. We tested whether the reflectance of eggshells, egg spottiness, and egg size of the ground‐nesting Kentish plover Charadrius alexandrinus is affected by maximum ambient temperature and solar radiation at breeding sites. We measured reflectance, both in the UV and human visible spectrum, spottiness, and egg size in photographs from a museum collection of plover eggshells. Eggshells of lower reflectance (darker) were found at higher latitudes. However, in southern localities where solar radiation is very high, eggshells are also of dark coloration. Eggshell coloration had no significant relationship with ambient temperature. Spotiness was site‐specific. Small eggs tended to be light‐colored. Thermal constraints may drive the observed spatial variation in eggshell coloration, which may be lighter in lower latitudes to diminish the risk of overheating as a result of higher levels of solar radiation. However, in southern localities with very high levels of UV radiation, eggshells are of dark coloration likely to protect embryos from more intense UV radiation. Egg size exhibited variation in relation to coloration, likely through the effect of surface area‐to‐volume ratios on overheating and cooling rates of eggs. Therefore, differential effects of solar radiation on functions of coloration and size of eggshells may shape latitudinal variations in egg appearance in the Kentish plover.  相似文献   

15.
The influences of intensity and repeated exposure to ultraviolet‐B radiation (UVB), photoreactivating repair radiation (PRR), and temperature on the scuticociliate Parauronema acutum were explored under laboratory conditions. Population growth was negatively affected after exposure to the equivalent of one sunny summer day of ambient UVB, especially in the absence of PRR. Repeated daily exposure to UVB severely compromised ciliate survival. UVB‐exposed treatments without PRR recovered slower and reached lower final abundances than treatments receiving PRR. Reducing the daily UVB exposure approximately 25% improved ciliate recovery after exposure. In the single exposure treatments, temperature effects were not consistent, except that growth was slowest for control and treatments at the lowest temperature (15 °C). These data suggest that dark repair and/or photoprotection are present in P. acutum, but photoenzymatic repair was the more effective mechanism in reversing UVB damage. Repeated exposure treatments without PRR had zero or declining growth at all temperatures (15, 20 and 25 °C), as did those with PRR at 15 °C. Significant temperature/dose differences were identified in the repeated exposure treatments; ciliates subjected to the higher UVB intensity with PRR survived only at 25 °C, while ciliate populations under reduced UVB increased at 20 and 25 °C.  相似文献   

16.
The ability of embryonating eggs of Ascaris lumbricoides to avoid desiccation by reducing the loss of water through the egg shell was investigated. When exposed to desiccation the eggs lost water at a rate dependent upon the relative humidity and ambient temperature, eventually resulting in the collapse of the eggs and the death of the enclosed embryo. The eggs are small with a large surface to volume ratio. A low permeability to gaseous exchange thus restricts water loss while still ensuring an adequate supply of oxygen for embryonic development. Relative humidity did not appear to affect the rate of development. In eggs exposed to desiccation at various constant temperatures, the rate of water loss increased as an exponential function of increasing temperature. When eggs were exposed to various temperatures before exposure to desiccation at 22 C, the rate of water loss increased as a function of increasing pretreatment temperature. After exposure to 63–65 C, the ability of the egg shell to slow down the loss of water was destroyed. These phenomena suggest that there is not a simple “critical” or “transition” temperature, but a gradual melting of the complex mixture of components forming the lipid layer.  相似文献   

17.
The amount of nutrients deposited into a bird egg varies both between and within clutches of the same female. Larger eggs enhance offspring traits, but as a tradeoff, laying large eggs also infers energetic costs to the female. Income breeders usually lay larger eggs later in the season, when temperatures and food availability are higher. Egg size is thus affected by the daily amount of energy available to produce an egg under cold conditions, but it is less well known in how far temperature exerts direct effects on egg size. We show that great tit females Parus major with access to ad libitum food and breeding in climate‐controlled aviaries varied their egg investments. The size of an individual egg was best predicted by mean temperatures one week pre‐laying, with females laying larger, rather than smaller, eggs under colder conditions. Eggs increased in size over the season, but not significantly over the laying sequence. The degree of daily temperature fluctuation did not influence egg size. In addition to a substantial between‐female variation, sisters were more similar to each other than unrelated females, showing that egg size does also reflect heritable intrinsic female properties. Natural variation in egg size is thus not only determined by energy‐limitation, but also due to females allocating more resources to eggs laid in colder environments, thus increasing early survival of the chicks. That the positive correlation between temperature and egg investments that is found in a natural population is reversed under ad libitum food conditions demonstrates that wild great tits tradeoff own condition with survival prospects of their chicks as a function of available food, not ambient temperature.  相似文献   

18.
The olive fruit fly Bactrocera (Dacus) oleae Gmelin is a major olive pest in Greece and other Mediterranean countries. Its population density and respective olive infestation is usually low in many areas of northern Greece during summer months. To some extent, this may be due to the prevailing high temperature and low relative humidity conditions. In the present work the effects of short term exposure to high temperatures on the survival and egg production of B. oleae pre‐imaginal stages and adults were studied under laboratory conditions. Different larval instars within infested green olive fruits, adults and pupae and were exposed for 2 h to a series of different high constant temperatures ranging from 34 to 42°C. Subsequently, survival percentages of pre‐imaginal stages and adults as well as the number of eggs laid by females previously exposed to high temperatures were determined. At temperatures up to 38°C high survival percentages of larvae and adults were observed, whereas pupae displayed a relatively increased heat tolerance up to 40°C. Female longevity and egg production were substantially reduced after heat stress. Prior acclimation at 33°C for 1 and 3 days resulted in increased adult survival following heat stress. We discuss the results with respect to the ability of the fly to survive and reproduce under high summer temperatures.  相似文献   

19.
温湿度对稻纵卷叶螟卵的联合作用   总被引:1,自引:0,他引:1  
为了探讨温湿度在稻纵卷叶螟Cnaphalocrocis medinalis (Guenée)种群发展中的作用, 通过室内实验调查了不同温度和湿度组合下该蛾卵的发育历期、 胚胎发育情况、 孵化率和卵粒重量的变化。结果表明: 在相同温度下卵历期随相对湿度的增大而缩短, 孵化率随相对湿度的加大而提高。在22℃下低于46%的相对湿度显著降低了卵的孵化率, 而在25~34℃下低于66%的相对湿度会引起孵化率的显著降低, 37℃下卵无论在何种湿度中均不能孵化。在50%左右的低湿条件下, 温度高于28℃后卵也不能孵化。温度在22~31℃和相对湿度在77%~100%范围内, 卵的孵化率无显著差异, 这属于稻纵卷叶螟卵的适宜温湿度范围。稻纵卷叶螟卵的发育起点温度和有效积温分别为10.1±0.6℃和63.7±3.5日度。卵的孵化率(Y)与温湿系数(RH/T)间呈显著的逻辑斯蒂曲线关系Y=0.8662/[1+exp(17.4084-7.5714×RH/T)]。温湿系数在2.34以下时卵孵化率将低于50%, 而达到3.0左右时孵化率接近最高值。结论认为, 低湿造成的稻纵卷叶螟卵重量显著降低、 卵粒干瘪、 胚胎发育受阻是致死卵的主要原因。  相似文献   

20.
1. Insects are sensitive to climate change. Consequently, insect‐mediated ecosystem functions and services may be altered by changing climates. 2. Dung beetles provide multiple services by burying manure. Using climate‐controlled chambers, the effects of warming on dung burial and reproduction by the dung beetle Sisyphus rubrus Paschalidis, 1974 were investigated. Sisyphus rubrus break up dung by forming and rolling away balls of manure for burial and egg deposition. 3. To simulate warming in the chambers, 0, 2 or 4 °C offsets were added to field‐recorded, diurnally fluctuating temperatures. We measured dung ball production and burial, egg laying, survival and residence times of beetles. 4. Temperature did not affect the size or number of dung balls produced; however warming reduced dung ball burial by S. rubrus. Because buried balls were more likely to contain eggs, warming could reduce egg laying via a reduction in ball burial. Warming reduced the humidity inside the chambers, and a positive relationship was found between the number of dung balls produced and humidity in two temperature treatments. Temperature did not affect survival, or whether or not a beetle left a chamber. Beetles that did leave the chambers took longer to do so in the warmest treatment. 5. This study demonstrates that climate warming could reduce reproduction and dung burial by S. rubrus, and is an important first step to understanding warming effects on burial services. Future studies should assess warming effects in field situations, both on individual dung beetle species and on aggregate dung burial services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号