首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Migraine is a complex, disabling disorder of the brain that manifests itself as attacks of often severe, throbbing head pain with sensory sensitivity to light, sound and head movement. There is a clear familial tendency to migraine, which has been well defined in a rare autosomal dominant form of familial hemiplegic migraine (FHM). FHM mutations so far identified include those in CACNA1A (P/Q voltage-gated Ca(2+) channel), ATP1A2 (N(+)-K(+)-ATPase) and SCN1A (Na(+) channel) genes. Physiological studies in humans and studies of the experimental correlate--cortical spreading depression (CSD)--provide understanding of aura, and have explored in recent years the effect of migraine preventives in CSD. Therapeutic developments in migraine have come by targeting the trigeminovascular system, with the most-recent being the proof-of-principle study of calcitonin gene-related peptide (CGRP) receptor antagonists in acute migraine. To understand the basic pathophysiology of migraine, brain imaging studies have firmly established reproducible changes in the brainstem in regions that include areas that are involved in sensory modulation. These data lead to the view that migraine is a form of sensory dysmodulatio--a system failure of normal sensory processing.  相似文献   

2.
Migraine is a common neurological disorder characterised by debilitating head pain and an assortment of additional symptoms which can include nausea, emesis, photophobia, phonophobia and occasionally visual sensory disturbances. Migraine is a complex disease caused by an interplay between predisposing genetic variants and environmental factors. It affects approximately 12?% of studied Caucasian populations with affected individuals being predominantly female. Genes involved in neurological, vascular or hormonal pathways have all been implicated in predisposition towards developing migraine. All of these are nuclear encoded genes, but given the role of mitochondria in a number of neurological disorders and in energy production it is possible that mitochondrial variants may play a role in the pathogenesis of this disease. Mitochondrial DNA has been a useful tool for studying population genetics and human genetic diseases due to the clear inheritance shown through successive generations. Given the clear gender bias found in migraine patients it may be important to investigate X-linked inheritance and mitochondrial-related variants in this disorder. This paper explores the possibility that mitochondrial DNA changes may play a role in migraine. Few variants in the mitochondrial genome have so far been investigated in migraine and new studies should be aimed towards investigating the role of mitochondrial DNA in this common disorder.  相似文献   

3.
The cerebral cortex serves a primary role in the pathogenesis of migraine. This aberrant brain activation in migraine can be noninvasively detected with magnetoencephalography (MEG). The objective of this study was to investigate the differences in motor cortical activation between attacks (ictal) and pain free intervals (interictal) in children and adolescents with migraine using both low- and high-frequency neuromagnetic signals. Thirty subjects with an acute migraine and 30 subjects with a history of migraine, while pain free, were compared to age- and gender-matched controls using MEG. Motor cortical activation was elicited by a standardized, validated finger-tapping task. Low-frequency brain activation (1∼50 Hz) was analyzed with waveform measurements and high-frequency oscillations (65–150 Hz) were analyzed with wavelet-based beamforming. MEG waveforms showed that the ictal latency of low-frequency brain activation was significantly delayed as compared with controls, while the interictal latency of brain activation was similar to that of controls. The ictal amplitude of low-frequency brain activation was significantly increased as compared with controls, while the interictal amplitude of brain activation was similar to that of controls. The ictal source power of high-frequency oscillations was significantly stronger than that of the controls, while the interictal source power of high-frequency oscillations was significantly weaker than that of controls. The results suggest that aberrant low-frequency brain activation in migraine during a headache attack returned to normal interictally. However, high-frequency oscillations changed from ictal hyper-activation to interictal hypo-activation. Noninvasive assessment of cortical abnormality in migraine with MEG opens a new window for developing novel therapeutic strategies for childhood migraine by maintaining a balanced cortical excitability.  相似文献   

4.
目的 偏头痛是一种复杂的脑功能障碍性疾病,全球范围内患病率为14.4%。功能连接测量两个神经信号之间的统计学相互依赖性,不同的功能连接反映了大脑区域协同工作的不同模式。因此,研究不同脑区的功能连接对于理解偏头痛的病理生理机制具有十分重要的意义。以往基于脑电图对偏头痛患者脑功能连接的分析主要集中在视觉和疼痛刺激。本文尝试研究偏头痛患者在发作间期对体感刺激的皮质反应,以进一步了解偏头痛的神经功能障碍,为偏头痛的预防和治疗提供线索。方法 招募23例无先兆偏头痛患者,10例有先兆偏头痛患者,28名健康对照者。所有受试者均进行详细的基本资料和病史采集,完善量表评估,在正中神经体感刺激下进行脑电图记录。计算68个脑区的相干性作为功能连接,并评估功能连接与临床参数的相关性。结果 在正中神经体感刺激下,无先兆偏头痛和有先兆偏头痛患者的脑电功能连接与对照组相比存在差异,异常的脑电功能连接主要位于感觉辨别、疼痛调节、情绪认知和视觉处理等区域。无先兆偏头痛和有先兆偏头痛患者的大脑皮层对体感刺激可能具有相同的反应方式。偏头痛患者的功能连接异常与临床特征之间存在相关性,可以部分反映偏头痛的严重程度。结论 本研究...  相似文献   

5.
T. J. Murray 《CMAJ》1979,120(4):441-443
Carotidynia is a form of vascular neck are face pain in which the vascular change occurs in the carotid artery in the neck. The disorder is not uncommon, and most patients have a prior history of migraine. They present with pain in the neck and face, and are often thought to have a disorder such as chronic sinusitis or trigeminal neuralgia. Diagnosis can be made from the type and location of the pain and the finding of a tender and swollen carotid artery on the same side. Carotidynia responds to the prophylactic medications used for migraine, often disappearing in weeks or months. In some patients the syndrome may become recurrent or chronic, with a variable response to medication.  相似文献   

6.
Migraine comorbid with depression is common and is often encountered in clinical practice. The comorbidity may lead to more serious conditions with other symptoms and a longer duration of treatment and it may impose heavy economic and social burdens, directly or indirectly, on patients and their families. Numerous studies have been published on the association of migraine with depression. Numerous literature have showed that the comorbidity may have a common complicated pathogenic mechanism involving biopsychosocial characteristics, including abnormal brain development and shared genetic basis, as well as neurotransmitters, sex hormones and stress. In addition, some studies have identified the multiple, bidirectional relationship between migraine and depressive disorder. We searched the literature for the possible common mechanisms between migraine and depression and classified the research results.  相似文献   

7.
Etiopathogenesis of migraine involves different structures of the central nervous system: the trigeminal nerve with nuclei located in the brain stem, vascular system, and the cerebral cortex as well as diverse mechanisms and pathological processes. The multidirectional action of purines in different cell types (blood vessels, neurons, and satellite glial cells) and through different types of purinergic receptors contributes to the etiopathogenesis of migraine pain. Adenosine triphosphate (ATP) and its derivatives are involved in initiation and propagation of migrenogenic signals in several ways: they participate in vasomotor mechanism, cortical spreading depression, and in fast transmission or cross-excitation based on the satellite glial cells in trigeminal ganglion. Contribution of purinergic signaling in the conduction of pain is realized through the activation of P1 and P2 receptors expressed widely in the central nervous system: on the neurons and glial cells as well as on the smooth muscles and endothelium in the vascular system. Therefore, the purinergic receptors can be an excellent target for pharmacologists constructing new antimigraine therapeutics. Moreover, the mechanisms facilitating ATP and adenosine degradation may prevent vasodilatation and thus avoid a secondary central sensitization during a migraine attack. Thus, agonists and antagonists of P receptors as well as ecto-enzymes metabolizing nucleotides/nucleosides could gain the growing attention as therapeutic agents.  相似文献   

8.
Goadsby PJ 《Neuron》2004,41(5):679-680
Migraine aura is a sometimes disabling disorder of the brain that involves significant neurological symptoms in about 30% of patients. In this issue of Neuron, van den Maagdenberg et al. characterize a mouse with a knockin mutation known to cause familial hemiplegic migraine and provide evidence that a lowered threshold to the triggering of CSD may account for the devastating phenotype of familial hemiplegic migraine.  相似文献   

9.
Migraine is a common neurological disease with a genetic basis affecting approximately 12% of the population. Pain during a migraine attack is associated with activation of the trigeminal nerve system, which carries pain signals from the meninges and the blood vessels infusing the meninges to the trigeminal nucleus in the brain stem. The release of inflammatory mediators following cortical spreading depression (CSD) may further promote and sustain the activation and sensitization of meningeal nociceptors, inducing the persistent throbbing headache characterised in migraine. Lymphotoxin α (LTA) is a cytokine secreted by lymphocytes and is a member of the tumour necrosis factor (TNF) family. Genetic variation with the TNF and LTA genes may contribute to threshold brain excitability, propagation of neuronal hyperexcitability and thus initiation and maintenance of a migraine attack. Three LTA variants rs2009658, rs2844482 and rs2229094 were identified in a recent pGWAS study conducted in the Norfolk Island population as being potentially implicated in migraine with nominally significant p values of p = 0.0093, p = 0.0088 and p = 0.033 respectively. To determine whether these SNPs played a role in migraine in a general outbred population these SNPs were gentoyped in a large case control Australian Caucasian population and tested for association with migraine. All three SNPs showed no association in our cohort (p > 0.05). Validation of GWAS data in independent case-controls cohorts is essential to establish risk validity within specific population groups. The importance of cytokines in modulating neural inflammation and pain threshold in addition to other studies showing associations between TNF-α and SNPs in the LTA gene with migraine, suggests that LTA could be an important factor contributing to migraine. Although the present study did not support a role for the tested LTA variants in migraine, investigation of other variants within the LTA gene is still warranted.  相似文献   

10.
Update on the genetics of migraine   总被引:10,自引:0,他引:10  
Estevez M  Gardner KL 《Human genetics》2004,114(3):225-235
The field of migraine genetics has seen an explosion of information over the last year. In a recent breakthrough, missense mutations in a chromosome 1q23 gene, ATP1A2, encoding a Na+, K+-ATPase, have been identified in four distinct pedigrees with a rare form of familial hemiplegic migraine (FHM). ATP1A2 is expressed in the brain, like the voltage gated calcium channel gene, CACNA1A, previously identified as the first hemiplegic migraine gene (FHM1). The shared hemiplegic migraine phenotype of mutations in ATP1A2 and CACNA1A raises the possibility that they coordinately regulate ion homeostasis that determines susceptibility to the initiation of both migraine aura and the pain phase of migraine. For the more common and genetically complex forms of migraine, genome-wide screens have identified several new loci on 4q24, 6p12.2–21.1, 11q24, and 14q21.2-q22.3, suggesting additional migraine genes in these regions. In addition, a recent large case-control association study has linked single nucleotide polymorphisms in the insulin receptor/INSR gene with migraine. However, these polymorphisms do not result in detectable changes in receptor function. The continuing genetic identification of key proteins involved in migraine will refine our understanding of this common and sometimes debilitating disorder, which can strike during the most productive years of a persons life. Given the co-morbidity of migraine with depression and bipolar disorder, our knowledge of the causes of migraine may also contribute to our understanding of these disorders.  相似文献   

11.
C N Chen A 《生理学报》2008,60(5):677-685
In the past two decades, pain perception in the human brain has been studied with EEG/MEG brain topography and PET/ fMRI neuroimaging techniques. A host of cortical and subeortical loci can be activated by various nociceptive conditions. The activation in pain perception can be induced by physical (electrical, thermal, mechanical), chemical (capsacin, ascoric acid), psychological (anxiety, stress, nocebo) means, and pathological (e.g. migraine, neuropathic) diseases. This article deals mainly on the activation, but not modulation, of human pain in the brain. The brain areas identified are named pain representation, matrix, neuraxis, or signature. The sites are not uniformly isolated across various studies, but largely include a set of cores sites: thalamus and primary somatic area (SI), second somatic area (SII), insular cortex (IC), prefrontal cortex (PFC), cingnlate, and parietal cortices. Other areas less reported and considered important in pain perception include brainstem, hippocampus, amygdala and supplementary motor area (SMA). The issues of pain perception basically encompass both the site and the mode of brain function. Although the site issue is delineared to a large degree, the mode issue has been much less explored. From the temporal dynamics, IC can be considered as the initial stage in genesis of pain perception as conscious suffering, the unique aversion in the human brain.  相似文献   

12.
The aim of this article is to describe the roles of water channel proteins (WCPs) in brain functionality. The fluid compartments of the brain, which include the brain parenchyma (with intracellular and extracellular spaces), the intravascular and the cerebrospinal fluid compartments are presented. Then the localization and functional roles of WCPs found in the brain are described: AQP1, AQP2, AQP3, AQP4, AQP5, AQP7, AQP8, AQP9 and AQP11. In subsequent chapters the involvement of brain WCPs in pathologies are discussed: brain edema, brain trauma, brain tumors, stroke, dementia (Alzheimer's disease, human immunodeficiency virus - HIV-dementia), autism, pain signal transduction and migraine, hydrocephalus and other pathologies with neurological implications: eclampsia, uremia. New WCP ligands for brain imaging are also discussed.  相似文献   

13.
The hypothalamus has been implicated in migraine based on the manifestation of autonomic symptoms with the disease, as well as neuroimaging evidence of hypothalamic activation during attacks. Our objective was to determine functional connectivity (FC) changes between the hypothalamus and the rest of the brain in migraine patients vs. control subjects. This study uses fMRI (functional magnetic resonance imaging) to acquire resting state scans in 12 interictal migraine patients and 12 healthy matched controls. Hypothalamic connectivity seeds were anatomically defined based on high-resolution structural scans, and FC was assessed in the resting state scans. Migraine patients had increased hypothalamic FC with a number of brain regions involved in regulation of autonomic functions, including the locus coeruleus, caudate, parahippocampal gyrus, cerebellum, and the temporal pole. Stronger functional connections between the hypothalamus and brain areas that regulate sympathetic and parasympathetic functions may explain some of the hypothalamic-mediated autonomic symptoms that accompany or precede migraine attacks.  相似文献   

14.
Migraine is a common neurological disorder with a strong genetic basis. However, the complex nature of the disorder has meant that few genes or susceptibility loci have been identified and replicated consistently to confirm their involvement in migraine. Approaches to genetic studies of the disorder have included analysis of the rare migraine subtype, familial hemiplegic migraine with several causal genes identified for this severe subtype. However, the exact genetic contributors to the more common migraine subtypes are still to be deciphered. Genome-wide studies such as genome-wide association studies and linkage analysis as well as candidate genes studies have been employed to investigate genes involved in common migraine. Neurological, hormonal and vascular genes are all considered key factors in the pathophysiology of migraine and are a focus of many of these studies. It is clear that the influence of individual genes on the expression of this disorder will vary. Furthermore, the disorder may be dependent on gene–gene and gene–environment interactions that have not yet been considered. In addition, identifying susceptibility genes may require phenotyping methods outside of the International Classification of Headache Disorders II criteria, such as trait component analysis and latent class analysis to better define the ambit of migraine expression.  相似文献   

15.
Molecular genetics of migraine   总被引:2,自引:0,他引:2  
Migraine is an episodic neurovascular disorder that is clinically divided into two main subtypes that are based on the absence or presence of an aura: migraine without aura (MO) and migraine with aura (MA). Current molecular genetic insight into the pathophysiology of migraine predominantly comes from studies of a rare monogenic subtype of migraine with aura called familial hemiplegic migraine (FHM). Three FHM genes have been identified, which all encode ion transporters, suggesting that disturbances in ion and neurotransmitter balances in the brain are responsible for this migraine type, and possibly the common forms of migraine. Cellular and animal models expressing FHM mutations hint toward neuronal hyperexcitability as the likely underlying disease mechanism. Additional molecular insight into the pathophysiology of migraine may come from other monogenic syndromes (for instance cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, which is caused by NOTCH3 mutations), in which migraine is prominent. Investigating patients with common forms of migraine has had limited successes. Except for 5′,10′-methylenetetrahydrolate reductase, an enzyme in folate metabolism, the large majority of reported genetic associations with candidate migraine genes have not been convincingly replicated. Genetic linkage studies using migraine subtypes as an end diagnosis did not yield gene variants thus far. Clinical heterogeneity in migraine diagnosis may have hampered the identification of such variants. Therefore, the recent introduction of more refined methods of phenotyping, such as latent-class analysis and trait component analysis, may be certainly helpful. Combining the new phenotyping methods with genome-wide association studies may be a successful strategy toward identification of migraine susceptibility genes. Likely the identification of reliable biomarkers for migraine diagnosing will make these efforts even more successful.  相似文献   

16.
Fibromyalgia (FM) pain is frequent in the general population but its pathogenesis is only poorly understood. Many recent studies have emphasized the role of central nervous system pain processing abnormalities in FM, including central sensitization and inadequate pain inhibition. However, increasing evidence points towards peripheral tissues as relevant contributors of painful impulse input that might either initiate or maintain central sensitization, or both. It is well known that persistent or intense nociception can lead to neuroplastic changes in the spinal cord and brain, resulting in central sensitization and pain. This mechanism represents a hallmark of FM and many other chronic pain syndromes, including irritable bowel syndrome, temporomandibular disorder, migraine, and low back pain. Importantly, after central sensitization has been established only minimal nociceptive input is required for the maintenance of the chronic pain state. Additional factors, including pain related negative affect and poor sleep have been shown to significantly contribute to clinical FM pain. Better understanding of these mechanisms and their relationship to central sensitization and clinical pain will provide new approaches for the prevention and treatment of FM and other chronic pain syndromes.  相似文献   

17.

Background

Previous studies have defined low-frequency, spatially consistent intrinsic connectivity networks (ICN) in resting functional magnetic resonance imaging (fMRI) data which reflect functional interactions among distinct brain areas. We sought to explore whether and how repeated migraine attacks influence intrinsic brain connectivity, as well as how activity in these networks correlates with clinical indicators of migraine.

Methods/Principal Findings

Resting-state fMRI data in twenty-three patients with migraines without aura (MwoA) and 23 age- and gender-matched healthy controls (HC) were analyzed using independent component analysis (ICA), in combination with a “dual-regression” technique to identify the group differences of three important pain-related networks [default mode network (DMN), bilateral central executive network (CEN), salience network (SN)] between the MwoA patients and HC. Compared with the HC, MwoA patients showed aberrant intrinsic connectivity within the bilateral CEN and SN, and greater connectivity between both the DMN and right CEN (rCEN) and the insula cortex - a critical region involving in pain processing. Furthermore, greater connectivity between both the DMN and rCEN and the insula correlated with duration of migraine.

Conclusions

Our findings may provide new insights into the characterization of migraine as a condition affecting brain activity in intrinsic connectivity networks. Moreover, the abnormalities may be the consequence of a persistent central neural system dysfunction, reflecting cumulative brain insults due to frequent ongoing migraine attacks.  相似文献   

18.
When food is restricted to a few hours daily, animals increase their locomotor activity 2-3 h before food access, which has been termed food anticipatory activity. Food entrainment has been linked to the expression of a circadian food-entrained oscillator (FEO) and the anatomic substrate of this oscillator seems to depend on diverse neural systems and peripheral organs. Previously, we have described a differential involvement of hypothalamic nuclei in the food-entrained process. For the food entrainment pathway, the communication between the gastrointestinal system and central nervous system is essential. The visceral synaptic input to the brain stem arrives at the dorsal vagal complex and is transmitted directly from the nucleus of the solitary tract (NST) or via the parabrachial nucleus (PBN) to hypothalamic nuclei and other areas of the forebrain. The present study aims to characterize the response of brain stem structures in food entrainment. The expression of c-Fos immunoreactivity (c-Fos-IR) was used to identify neuronal activation. Present data show an increased c-Fos-IR following meal time in all brain stem nuclei studied. Food-entrained temporal patterns did not persist under fasting conditions, indicating a direct dependence on feeding-elicited signals for this activation. Because NST and PBN exhibited a different and increased response from that expected after a regular meal, we suggest that food entrainment promotes ingestive adaptations that lead to a modified activation in these brain stem nuclei, e.g., stomach distension. Neural information provided by these nuclei to the brain may provide the essential entraining signal for FEO.  相似文献   

19.
Migraine is a common neurovascular brain disorder characterised by recurrent attacks of severe headache that may be accompanied by various neurological symptoms. Migraine is thought to result from activation of the trigeminovascular system followed by vasodilation of pain-producing intracranial blood vessels and activation of second-order sensory neurons in the trigeminal nucleus caudalis. Calcitonin gene-related peptide (CGRP) is a mediator of neurogenic inflammation and the most powerful vasodilating neuropeptide, and has been implicated in migraine pathophysiology. Consequently, genes involved in CGRP synthesis or CGRP receptor genes may play a role in migraine and/or increase susceptibility. This study investigates whether variants in the gene that encodes CGRP, calcitonin-related polypeptide alpha (CALCA) or in the gene that encodes a component of its receptor, receptor activity modifying protein 1 (RAMP1), are associated with migraine pathogenesis and susceptibility. The single nucleotide polymorphisms (SNPs) rs3781719 and rs145837941 in the CALCA gene, and rs3754701 and rs7590387 at the RAMP1 locus, were analysed in an Australian Caucasian population of migraineurs and matched controls. Although we find no significant association of any of the SNPs tested with migraine overall, we detected a nominally significant association (p = 0.031) of the RAMP1 rs3754701 variant in male migraine subjects, although this is non-significant after Bonferroni correction for multiple testing.  相似文献   

20.
Although the trigeminal nerve innervates the meninges and participates in the genesis of migraine headaches, triggering mechanisms remain controversial and poorly understood. Here we establish a link between migraine aura and headache by demonstrating that cortical spreading depression, implicated in migraine visual aura, activates trigeminovascular afferents and evokes a series of cortical meningeal and brainstem events consistent with the development of headache. Cortical spreading depression caused long-lasting blood-flow enhancement selectively within the middle meningeal artery dependent upon trigeminal and parasympathetic activation, and plasma protein leakage within the dura mater in part by a neurokinin-1-receptor mechanism. Our findings provide a neural mechanism by which extracerebral cephalic blood flow couples to brain events; this mechanism explains vasodilation during headache and links intense neurometabolic brain activity with the transmission of headache pain by the trigeminal nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号