首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transgenic plants have been employed successfully as a low-cost system for the production of therapeutically valuable proteins, including antibodies, antigens and hormones. Here, we report the expression of the fusion (F) gene of the Newcastle disease virus (NDV) in transgenic maize plants. The expression of the transgene, driven by the maize ubiquitin promoter, caused accumulation of the F protein in maize kernels. The presence of the transgene was verified by Southern and western blots. Feeding chickens with kernels containing the F protein induced the production of antibodies, which conferred protection against a viral challenge. This protection was comparable to that conferred by a commercial vaccine. Possible uses of this plant-based F protein as a potential mucosal vaccine are discussed.  相似文献   

2.
There are many different agricultural expression systems that can be used for the large-scale production of recombinant proteins, but field-grown cereal crops are among the most attractive because recombinant proteins can be targeted to accumulate in the seed, and specifically in the endosperm, which has evolved naturally as a protein storage tissue. Within the developing endosperm, proteins are supplied with molecular chaperones and disulfide isomerases to facilitate folding and assembly, while the mature tissue is desiccated to prevent proteolytic degradation. Proteins expressed in cereal seeds can therefore remain stable for years in ambient conditions. Recent basic research has revealed a surprising diversity of protein targeting mechanisms in the endosperm, which can help to control post-translational modification and accumulation. Applied research and commercial development has seen several pharmaceutical proteins produced in cereals reach late stage preclinical development and the first clinical trials, with a number of companies now dedicated to developing cereal-based production platforms. In this review we discuss the basic science of molecular pharming in cereals, some of the lead product candidates, and challenges that remain to be addressed including the emerging regulatory framework for plant-made pharmaceuticals.  相似文献   

3.
During the past two decades, antibodies, antibody derivatives and vaccines have been developed for therapeutic and diagnostic applications in human and veterinary medicine. Numerous species of dicot and monocot plants have been genetically modified to produce antibodies or vaccines, and a number of diverse transformation methods and strategies to enhance the accumulation of the pharmaceutical proteins are now available. Veterinary applications are the specific focus of this article, in particular for pathogenic viruses, bacteria and eukaryotic parasites. We focus on the advantages and remaining challenges of plant-based therapeutic proteins for veterinary applications with emphasis on expression platforms, technologies and economic considerations.  相似文献   

4.
This is the first report of an antibody-fusion protein expressed intransgenic plants for direct use in a medical diagnostic assay. By the use ofgene constructs with appropriate promoters, high level expression of ananti-glycophorin single-chain antibody fused to an epitope of the HIV virus wasobtained in the leaves and stems of tobacco, tubers of potato and seed ofbarley. This fusion protein replaces the SimpliRED diagnostic reagent,used for detecting the presence of HIV-1 antibodies in human blood. The reagentis expensive and laborious to produce by conventional means since chemicalmodifications to a monoclonal antibody are required. The plant-produced fusionprotein was fully functional (by ELISA) in crude extracts and, for tobacco atleast, could be used without further purification in the HIV agglutinationassay. All three crop species produced sufficient reagent levels to be superiorbioreactors to bacteria or mice, however barley grain was the most attractivebioreactor as it expressed the highest level (150 g of reagentg-1), is inexpensive to produce and harvest, poses aminuscule gene flow problem in the field, and the activity of the reagent islargely undiminished in stored grain. This work suggests that barley seed willbe an ideal factory for the production of antibodies, diagnosticimmuno-reagents, vaccines and other pharmaceutical proteins.  相似文献   

5.
A high throughput genetic transformation system in maize has been developed with Agrobacterium tumefaciens mediated T-DNA delivery. With optimized conditions, stable callus transformation frequencies for Hi-II immature embryos averaged approximately 40%, with results in some experiments as high as 50%. The optimized conditions include N6 medium system for Agrobacterium inoculation, co-cultivation, resting and selection steps; no AgNo3 in the infection medium and adding AgNo3 in co-cultivation, resting and selection medium; Agrobacterium concentration at 0.5×109 c.f.u. ml–1 for bacterium inoculation; 100 mg l–1 carbenicillin used in the medium to eliminate Agrobacterium after inoculation; and 3 days for co-cultivation and 4 days for resting. A combination of all of these conditions resulted in establishing a high throughput transformation system. Over 500 T0 plants were regenerated and these plants were assayed by transgene expression and some of them were also analyzed by Southern hybridization. T1 plants were analyzed and transmission of transgenes to the T1 generation was verified. This represents a highly reproducible and reliable system for genetic transformation of maize Hi-II.  相似文献   

6.
Transformation techniques are making it possible to produce novel and unusual plant phenotypes. When considering the environmental impact of these, it is important to do so in the context of what is known about conventional plant breeding and the thousands of varieties that have been produced during this century and earlier. There has now been over ten years of experience of environmental impact assessment with transgenic plants, and research has enabled that assessment process to be better informed scientifically. There are, however, important challenges for the future. Fundamental changes in plant biology, including enhanced tolerance to stressful environments, may create a class of plants that are different from those that have been produced so far, and there may be lessons to be learnt from the experience worldwide of the release of exotic species into different countries. Scale-dependent effects of transgenic plants in agriculture can only effectively be measured by large scale production and monitoring. The monitoring process presents a number of challenges to provide oversight that is meaningful and helpful in assessing environmental impact. The international transboundary movement of transgenic plants is already a reality, and it is important that our environmental impact assessments take this possibility into account. This includes both intentional transboundary movement, through trade of commodity crops, but also unintentional transboundary movement, including the possibility of seeds being moved by animals, by transportation and by humans across the world. There are some major challenges in devising agricultural strategies for the transgenic crops that will become available in the future. The responsibility for developing agricultural strategy rests at a number of levels. To achieve this, it will be necessary to have effective dialogue between the regulatory authorities, the plant breeding and agrochemical industries, and the farming industry. There are already encouraging moves in this direction and hopefully this will continue.  相似文献   

7.
Several modifications of a wild-type green fluorescent protein (GFP) gene were combined into a single construct, driven by the ubi-1 promoter and intron region, and transformed into maize. Green fluorescence, indicative of GFP expression, was observed in stably transformed callus as well as in leaves and roots of regenerated plants and their progeny. Cell wall autofluorescence made GFP expression difficult to observe in sections of leaves and roots. However, staining sections with toluidine blue allowed detection of GFP in transgenic tissue. Bright GFP fluorescence was observed in approximately 50% of the pollen of transgenic plants. These results suggest that GFP can be used as a reporter gene in transgenic maize; however, further modification, i.e., to alter the emission spectra, would increase its utility. Received: 17 December 1997 / Revision received: 6 March 1998 / Accepted: 20 March 1998  相似文献   

8.
Summary Excretion products of maize roots (Zea mays cv. Koshu) were estimated. All excreted products were the highest by fresh weight basis at the young seedling stage. In amino acids excreted, glutamic acid accounting for 60% of the total was the highest and followed by alanine. These two amino acids showed the diverse fluctuation according to the growing age, that is, glutamic acid increased while alanine decreased. Stachyose was a main soluble sugar excepting the stage prior to the heading. At this stages, glucose and fructose together with stachyose were observed. Lactic acid was the most dominant organic acid through whole growing stages. These excreted materials could be positive factors for the growth ofSpirillum lipoferum which can fix nitrogen non-symbiotically at the rhizosphere of maize.  相似文献   

9.
We have demonstrated that targeted mutagenesis can be accomplished in maize plants by excision, activation, and subsequent elimination of an endonuclease in the progeny of genetic crosses. The yeast FLP/FRT site-specific recombination system was used to excise and transiently activate the previously integrated yeast I-SceI homing endonuclease in maize zygotes and/or developing embryos. An artificial I-SceI recognition sequence integrated into genomic DNA was analyzed for mutations to indicate the I-SceI endonuclease activity. Targeted mutagenesis of the I-SceI site occurred in about 1% of analyzed F1 plants. Short deletions centered on the I-SceI-produced double-strand break were the predominant genetic lesions observed in the F1 plants. The I-SceI expression cassette was not detected in the mutant F1 plants and their progeny. However, the original mutations were faithfully transmitted to the next generation indicating that the mutations occurred early during the F1 plant development. The procedure offers simultaneous production of double-strand breaks and delivery of DNA template combined with a large number of progeny plants for future gene targeting experiments.  相似文献   

10.
11.
Plants have attracted interest as hosts for protein expression because of the promise of a large production capacity and a low production cost. However, recovery costs remain a challenge as illustrated for recovery of recombinant aprotinin, a trypsin inhibitor, with removal of native corn trypsin inhibitor from transgenic corn (Azzoni et al. in Biotechnol Bioeng 80:268–276, 2002). When expression is targeted to corn grain fractions, dry milling can separate germ and endosperm fractions. Hence, only the product-containing fraction needs to be extracted, reducing the cost of extraction and the impurity level of the extract. Selective extraction conditions can reduce impurity levels to the point that low-cost adsorbents can result in relatively high purity levels. In this work, we attempted to achieve comparable purity with these lower cost methods. We replaced whole grain extraction and purification of recombinant aprotinin with sequential trypsin affinity and IMAC steps with an alternative of germ fraction extraction and purification with ion exchange and hydrophobic interaction chromatography (HIC). Using germ extraction at acidic pH supplemented with heat precipitation to remove additional host proteins resulted in a higher specific activity feed to the chromatographic steps. The cation exchange step provided 7.6× purification with 76.4% yield and no sodium dodecyl sulfate–polyacrylamide gel electrophoresis detectable native corn trypsin inhibitor. After the HIC step (2.7× step purification with 44.0% yield), the final product had a specific activity that was 75.3% of that of the affinity-purified aprotinin.  相似文献   

12.
13.
14.
 Maize (Zea mays L.) callus cultures cannot use mannose as a sole carbohydrate source, but can utilize fructose for that purpose. Phosphomannose isomerase (PMI) can convert mannose to fructose. Transgenic maize plants were obtained by selecting polyethylene glycol (PEG)-mediated transformed protoplasts on mannose (20 g/l) containing medium. Transgenic calluses and plants carrying the PMI structural gene, manA, were able to convert mannose to fructose. The PEG-mediated protoplast transformation frequency was 0.06%. Stable transformation was confirmed by PCR, PMI activity, germination tests, and by histochemical staining with 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (X-Gluc). Stable integration of the transgenes into the maize genome was demonstrated in T1 and T2 plants. Results indicate that the mannose selection system can be used for maize PEG-mediated protoplast transformation. Received: 12 July 1999 / Revision received: 11 October 1999 / Accepted: 11 October 1999  相似文献   

15.
Summary In order to analyze expression of the maize alcohol dehydrogenase 1 gene (Adh1), its promoter was fused with the gusA reporter gene and introduced into rice by protoplast transformation. Histochemical analysis of transgenic plants and their progeny showed that the maize Adh1 promoter is constitutively expressed in root caps, anthers, anther filaments, pollen, scutellum, endosperm and shoot and root meristem of the embryo. Induction of expression by the Adh1 promoter was examined using seedlings derived from selfed progeny of the transgenic plants. The results showed that expression of the Adh1 promoter was strongly induced (up to 81-fold) in roots of seedlings after 24 h of anaerobic treatment, concomitant with an increase in the level of gusA mRNA. 2,4-D also induced Adh1 promoter-directed expression of gusA to a similar extent. In contrast, little induction by anaerobic treatment was detected in transformed calli, leaves or roots of primary transformants or shoots of seedlings. A detailed examination of seedling roots during anaerobic treatment revealed that the induction started first at the meristem and after 3 h there was strong induction in the elongation zone which is located 1–2 mm above the meristem; the induction then progressed upward from this region. Our results suggest that transgenic rice plants carring the gusA reporter gene fused with promoters are useful for the study of anaerobic regulation of genes derived from graminaceous species.  相似文献   

16.
Plant natural products (PNPs) are unique in that they represent a vast array of different structural features, ranging from relatively simple molecules to very complex ones. Given the fact that many plant secondary metabolites exhibit profound biological activity, they are frequently used as fragrances and flavors, medicines, as well as industrial chemicals. As the intricate structures of PNPs often cannot be mimicked by chemical synthesis, the original plant providers constitute the sole source for their industrial, large‐scale production. However, sufficient supply is not guaranteed for all molecules of interest, making the development of alternative production systems a priority. Modern techniques, such as genome mining and thorough biochemical analysis, have helped us gain preliminary understanding of the enzymatic formation of the valuable ingredients in planta. Herein, we review recent advances in the application of biocatalytical processes, facilitating generation of complex PNPs through utilization of plant‐derived specific enzymes and combinatorial biochemistry. We further evaluate the options of employing heterologous organisms harboring PNP biosynthetic pathways for the production of secondary metabolites of interest.  相似文献   

17.
To use transgenic potato tubers (Solanum tuberosum cv. Désirée) for bulk production of recombinant antibodies, constructs were engineered for accumulating full-size IgGs and Fab fragments in the plant cell apoplast or endoplasmic reticulum (ER). An in-house transformation protocol was worked out for the efficient co-transformation of potato root explants. Accumulation levels in tubers of up to 0.5% of total soluble protein were found for antibodies targeted to the ER whereas five-fold lower accumulation levels were found for antibodies targeted for secretion. Additionally, different aspects important for the commercial exploitation of potato tubers as a heterologous production system were analysed. Tubers could be stored for up to 6 months without significant loss of antibody amount or activity. Minor variations in antibody accumulation levels were observed in tubers that originated from the same transformant. Most isolated IgGs and Fab fragments bound the antigen and had the correct molecular weight when compared with the hybridoma-derived standard. Processing to greenhouse or field trials, including in vitro propagation of a selected transformant, required only approximately 9 months from the start of transformation, a time frame in which hundreds of kilograms of transgenic potato tubers could easily be obtained. Small-scale purification of IgG was possible by using standard laboratory techniques. Thus, molecular farming in potato tubers can be a viable production system for economic production of clinically or industrially interesting macromolecules, such as antibodies.  相似文献   

18.
Plants are attractive expression systems for the economic production of recombinant proteins. Among the different plant-based systems, plant seed is the leading platform and holds several advantages such as high protein yields and stable storage of target proteins. Significant advances in using seeds as bioreactors have occurred in the past decade, which include the first commercialized plant-derived recombinant protein. Here we review the current progress on seeds as bioreactors, with focus on the different food crops as production platforms and comprehensive strategies in optimizing recombinant protein production in seeds.  相似文献   

19.
Green fluorescence protein (GFP) has become a widely used reporter in many areas of life science. Monitoring foreign protein expression via GFP fusion is also very appealing for bioprocess applications. GFP itself has been purified from recombinant organisms by several methods, often involving unfavorable conditions (e.g., use of organic solvents and/or low pH) that may be destabilizing to some proteins. In this study, we have developed a general recovery scheme that entails a simple three-step purification procedure for GFP fusion proteins produced in tobacco suspension cells, with the intent of maximizing purity and yield under gentle conditions so as to maintain the integrity of the fusion partner. Ammonium sulfate treatment at 30% (v/v) precipitated particulate matter and removed aggregated material while simultaneously maintaining GFP solubility and increasing hydrophobicity. Hydrophobic interaction chromatography was then performed to eliminate the majority of background proteins while eluting GFP and fusions in a low ionic buffer suitable to be directly applied to an ion-exchange column as the final step. Three intracellular proteins, secreted alkaline phosphatase (SEAP), and granulocyte-macrophage colony-stimulating factor (GMCSF), each fused to GFP, as well as GFP itself, were recovered with yields exceeding 70% and purity levels over 80%. This purification scheme exploits the hydrophobic nature of GFP while maintaining a gentle environment for labile fusion partners. Although some optimization may be required, we believe this scheme may serve as a benchmark for purifying other GFP fusion proteins.  相似文献   

20.
We describe a SELDI‐TOF MS procedure for the rapid detection and quantitation of low‐molecular‐weight recombinant proteins expressed in plants. Transgenic lines of potato (Solanum tuberosum L.) expressing the clinically useful protein bovine aprotinin or the cysteine protease inhibitor corn cystatin II were generated by Agrobacterium tumefaciens‐mediated transformation, and then used as test material for the analyses. Real‐time RT‐PCR amplifications and detection of the recombinant proteins by immunoblotting were first conducted for transformed potato lines accumulating the proteins in different cell compartments. Both proteins were found at varying levels in leaves, depending on their final cellular destination and transgene expression rate. These conclusions drawn from standard immunodetection assays were easily confirmed by SELDI‐TOF MS comparative profiling, after immobilizing the leaf proteins of control and transformed lines on protein biochips for weak cationic exchange. This procedure, carried out in less than 2 h, allows for the rapid comparison of recombinant protein levels in transgenic plant lines. The molecular weight of immobilized proteins can also be determined directly from the MS spectra, thus providing a simple way to assess the structural integrity and homogeneity of recombinant proteins in planta, and to identify the most suitable cellular compartments for their heterologous production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号