首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
HIV-1 capsid protein (CA) encloses the viral RNA genome and forms a conical-shaped particle in the mature HIV-1 virion, with orderly capsid assembly and disassembly critically important for viral infectivity. The 231 residue CA is composed of two helical domains, connected by a short linker sequence. In solution, CA exhibits concentration dependent dimerization which is mediated by the C-terminal domain (CTD). Here, we present nearly complete 1H, 15N and 13C assignments for the 20 kDa homodimeric CA–CTD, a prerequisite for structural characterization of the CA–CTD dimer.  相似文献   

2.
The 39 kDa receptor associated protein (RAP) is a modular protein consisting of multiple domains. There has been no x-ray crystal structure of RAP available and the full-length protein does not behave well in a NMR tube. To elucidate the 3D structure of the RAP, we undertook structure determination of individual domains of the RAP. As the first step, here we report the nearly complete assignments of the 1H, 13C and 15N chemical shift signals of domain 1 of the RAP.  相似文献   

3.
4.
5.
6.
7.
Nonstructural protein (nsp) 3 is the largest of 16 nsps translated from the murine hepatitis virus (MHV) genome. The N-terminal most domain of nsp3, nsp3a, has been identified by reverse genetics as a likely binding partner of MHV nucleocapsid protein. Here we report the backbone and side chain resonance assignments of MHV nsp3a (residues 1-114).  相似文献   

8.
YopH is a protein tyrosine phosphatase that functions as a required virulence factor in Yersinia. Here we report the backbone resonance assignments for a point mutant of the C-terminal catalytic domain of YopH.  相似文献   

9.
10.
Summary E-cadherin is a transmembrane protein that provides Ca2+-dependent cell adhesion to epithelial cells. The large majority of the 1H, 15N, 13C and 13CO resonances of a 146-amino acid polypeptide from epithelial (E-) cadherin have been assigned using multidimensional NMR spectroscopy. The structure of the amino-terminal 100 amino acids, corresponding to the first extracellular repeat of E-cadherin [Overduin et al. (1995) Science, 267, 386–389], has been refined. The monomeric state of this isolated domain is demonstrated by light scattering and sedimentation analysis. Seven -strands and two short helices were identified by patterns of NOE cross-peaks, vicinal coupling constants and chemical shift indices. A novel structural motif termed a quasi--helix found in the crystal structure of a neural (N-) cadherin domain [Shapiro et al. (1995) Nature, 374, 327–337] is characterized in detail for the first time by NMR. Slowly exchanging amides were concentrated in the -sheet region and quasi--helix. The -barrel fold of the cadherin domain is topologically similar to the immunoglobulin fold. Comparison of this solution structure to the crystallized dimers of the N-terminal pair of E-cadherin domains [Nagar et al. (1996) Nature, 380, 360–364] and of the homologous single domain of N-cadherin reveals a conserved cadherin fold with minor structural differences, which can be accounted for by differences in metal ligation and oligomeric state.Abbreviations cad extracellular cadherin repeat - CAM cell adhesion molecule - CSI chemical shift index - DTT dithiothreitol - E-cadherin epithelial cadherin - N-cadherin neural cadherin - NOE nuclear Overhauser enhancement - PFG pulsed field gradient - rmsd root-mean-square deviation  相似文献   

11.
Human muscle acylphosphatase (mAcP) is an enzyme with a ferrodoxin-like topology whose primary role is to hydrolyze the carboxyl-phosphate bonds of acylphosphates. The protein has been widely used as a model system for elucidating the molecular determinants of protein folding and misfolding. We present here the full NMR assignments of the backbone and side chains resonances of mAcP complexed with phosphate, thus providing an important resource for future solution-state NMR spectroscopic studies of the structure and dynamics of this protein in the contexts of protein folding and misfolding.  相似文献   

12.
13.
A 25-residue elongation at the N-terminus endows parvulin 17 (Par17) with altered functional properties compared to parvulin 14 (Par14), such as an enhanced influence on microtubule assembly. Therefore the three-dimensional structure of this N-terminal elongation is of particular interest. Here, we report the nearly complete 1H, 13C and 15N chemical shift assignments of Par17. Subsequent chemical shift index analysis indicated that Par17 features a parvulin-type PPIase domain at the C-terminus, analogous to Par14, and an unstructured N-terminus encompassing the first 60 residues. Hence the N-terminus of Par17 apparently adopts a functionally-relevant structure only in presence of the respective interaction partner(s).  相似文献   

14.
GSP13 encoded by gene yugI is a general stress protein in Bacillus subtilis. The NMR assignments of the protein are essential for its structure determination.  相似文献   

15.
Onconase® FL-G zymogen is a 120 residue protein produced by circular permutation of the native Onconase® sequence. In this construction, the wild type N- and C-termini are linked by a 16 residue segment and new N- and C-termini are generated at wild type positions R73 and S72. This novel segment linking the native N- and C-termini is designed to obstruct Onconase’s® active site and encloses a cleavage site for the HIV-1 protease. As a first step towards the resolution of its 3D structure and the study of its structure–function relationships, we report here the nearly complete NMR 1H, 13C and 15N resonance chemical shift assignments at pH 5.2 and 35°C (BMRB deposit no 17973). The results presented here clearly show that the structure of the wild type Onconase® is conserved in the FL-G zymogen.  相似文献   

16.
17.
18.
Ca2+-Calmodulin binding to the variable N-terminal region of the diacylglycerol/phorbol ester-binding UNC13/Munc13 family of proteins modulates the short-term synaptic plasticity characteristics in neurons. Here, we report the sequential backbone and side chain resonance assignment of the Ca2+-Calmodulin/Munc13-1458–492 peptide complex at pH 6.8 and 35°C (BMRB No. 15470).  相似文献   

19.
One of the small proteins from Helicobacter pylori, acyl carrier protein (ACP), was investigated by NMR. ACP is related to various cellular processes, especially with the biosynthesis of fatty acid. The basic NMR resonance assignment is a prerequisite for the validation of a heterologous protein interaction with ACP in H. pylori. Here, the results of the backbone (1)H, (15)N, and (13)C resonance assignments of the H. pylori ACP are reported using double- and triple-resonance techniques. About 97% of all of the (1)HN, (15)N, (13)CO, (13)Calpha, and (13)Cbeta resonances that cover 76 of the 78 non-proline residues are clarified through sequential- and specific- assignments. In addition, four helical regions were clearly identified on the basis of the resonance assignments.  相似文献   

20.
Shin R  Tzou YM  Krishna NR 《Biochemistry》2011,50(44):9457-9467
The capsid protein (CA) of HIV-1 plays a significant role in the assembly of the immature virion and is the critical building block of its mature capsid. Thus, there has been significant interest in the CA protein as a target in the design of inhibitors of early and late stage events in the HIV-1 replication cycle. However, because of its inherent flexibility from the interdomain linker and the monomer-dimer equilibrium in solution, the HIV-1 wild-type CA monomer has defied structural determinations by X-ray crystallography and nuclear magnetic resonance spectroscopy. Here we report the detailed solution structure of full-length HIV-1 CA using a monomeric mutant that, though noninfective, preserves many of the critical properties of the wild-type protein. The structure shows independently folded N-terminal (NTD) and C-terminal domains (CTD) joined by a flexible linker. The CTD shows some differences from that of the dimeric wild-type CTD structures. This study provides insights into the molecular mechanism of the wild-type CA dimerization critical for capsid assembly. The monomeric mutant allows investigation of interactions of CA with human cellular proteins exploited by HIV-1, directly in solution without the complications associated with the monomer-dimer equilibrium of the wild-type protein. This structure also permits the design of inhibitors directed at a novel target, viz., interdomain flexibility, as well as inhibitors that target multiple interdomain interactions critical for assembly and interactions of CA with host cellular proteins that play significant roles within the replication cycle of HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号