首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecology of forest insect invasions   总被引:1,自引:0,他引:1  
Forests in virtually all regions of the world are being affected by invasions of non-native insects. We conducted an in-depth review of the traits of successful invasive forest insects and the ecological processes involved in insect invasions across the universal invasion phases (transport and arrival, establishment, spread and impacts). Most forest insect invasions are accidental consequences of international trade. The dominant invasion ‘pathways’ are live plant imports, shipment of solid wood packaging material, “hitchhiking” on inanimate objects, and intentional introductions of biological control agents. Invading insects exhibit a variety of life histories and include herbivores, detritivores, predators and parasitoids. Herbivores are considered the most damaging and include wood-borers, sap-feeders, foliage-feeders and seed eaters. Most non-native herbivorous forest insects apparently cause little noticeable damage but some species have profoundly altered the composition and ecological functioning of forests. In some cases, non-native herbivorous insects have virtually eliminated their hosts, resulting in major changes in forest composition and ecosystem processes. Invasive predators (e.g., wasps and ants) can have major effects on forest communities. Some parasitoids have caused the decline of native hosts. Key ecological factors during the successive invasion phases are illustrated. Escape from natural enemies explains some of the extreme impacts of forest herbivores but in other cases, severe impacts result from a lack of host defenses due to a lack of evolutionary exposure. Many aspects of forest insect invasions remain poorly understood including indirect impacts via apparent competition and facilitation of other invaders, which are often cryptic and not well studied.  相似文献   

2.
Both ecological and economic impacts factor into invasive alien species (IAS) management considerations; however, economic impacts are often difficult to assess, much less quantify. Studies frequently aggregate identified financial costs as a proxy for IAS economic impacts, but these aggregate figures are often generated in an ad hoc fashion. Such estimates typically sum disparate costs, which might vary with respect to precision, accuracy, and scope. A standardized approach for IAS costing would better enable the comparison of cost estimates between taxa and across studies by controlling for surveying and scaling inconsistencies. This study develops a simple, survey-based approach to generate economic cost estimates for non-native freshwater invasive species (FIS) in Great Britain. The approach scales an average cost for each species by a ratio of management effort, thereby estimating the actual, annual expenditures incurred by a variety of stakeholders. The Great Britain-wide cost of controlling FIS is estimated to be approximately £26.5 million year−1; however, the costs of control could total £43.5 million year−1 if management efforts were undertaken at all FIS infested locations. Cost estimates are highest for Canadian pondweed (Elodea canadensis), a particularly widespread species, and for the zebra mussel (Dreissena polymorpha), which adversely impacts both industrial water users and boaters. This assessment of the relative economic impacts between species provides policy-makers with a monetary basis for rank-ordering species’ economic impacts and prioritizing management efforts. In addition, the cost assessment approach developed in this study could serve as a model for IAS economic impact assessments elsewhere.  相似文献   

3.
This article examines the use of economic analysis to inform bioinvasion management, with particular focus on forest resources. Economics is key for understanding invasion processes, impacts, and decision-making. Biological invasions are driven by and affect economic activities at multiple scales and stages of an invasion. Bioeconomic modeling seeks to inform how resources can be optimally allocated across invasion management activities—including prevention, surveillance programs for early detection and management, and controlling invasion populations and spread—to minimize the long-term costs and damages. Economic analysis facilitates understanding of decisions by public and private decision-makers, gaps between these, and the design of policies to achieve socially desirable outcomes. Private decision-makers may undercontrol invasions relative to socially optimal levels, because they generally account for their own costs and benefits of control but less often for broader ecosystem impacts or future spread across the landscape. Economic analysis considers approaches for increasing private invasion management and evaluates feedbacks between ecological and economic systems that can affect policy outcomes. Future research should continue evaluation and design of control strategies across the biosecurity continuum and across species to enhance cost-effectiveness, better incorporate uncertainty into policy design, increase focus on incentives and behavioral tools to influence private behaviors that affect invasion spread, and incorporate invasive species consideration within broader systems-focused science. In addition, challenges in valuing biodiversity and ecosystem service impacts and the costs and effectiveness of control measures are key data gaps. Greater collaboration between decision-makers and researchers will facilitate development and communication of usable economic research.  相似文献   

4.
Worldwide, we rely on introduced plants for the essentials of human life; however, intentional plant introductions for commercial benefit have resulted in invaders with negative environmental, economic or social impacts. We argue that plant species of low expected economic value should be less acceptable for introduction than species of high economic value if their other traits are similar; however, key traits such as likelihood of escape and costs of escape are often highly uncertain. Methods do not currently exist which allow decision makers to evaluate costs and benefits of introduction under uncertainty. We developed a cost-benefit analysis for determining plant introduction that incorporates probability of escape, expected economic costs after escape, expected commercial benefits, and the efficiency and cost of containment. We used a model to obtain optimal decisions for the introduction and containment of commercial plants while maximizing net benefit or avoiding losses. We also obtained conditions for robust decisions which take into account severe uncertainty in model parameters using information-gap decision theory. Optimal decisions for introduction and containment of commercial plants depended, not only on the probability of escape and subsequent costs incurred, but also on the anticipated commercial benefit, and the cost and efficiency of containment. When our objective is to maximize net benefit, increasing uncertainty in parameter values increased the likelihood of introduction; in contrast, if our objective is to avoid losses, more uncertainty decreased the likelihood of introduction.  相似文献   

5.
Non-native species are a major component of global environmental change, and aquatic systems are especially vulnerable to non-native species impacts. Much of the research on aquatic non-native species impact has occurred at the local or site level. In reality, non-native species impacts play out across multiple spatial scales on heterogeneous landscapes. How can we ‘scale up’ our understanding of site-level impacts to the broader landscape scale? To address this disconnect, we synthesize our current understanding of key components of landscape-scale non-native species impacts: geographic range, abundance, and local impacts. Most aquatic non-native species have small ranges, while a few have large ranges. However, aquatic non-native species are often far from saturated on landscapes, and occurrence records are often woefully incomplete. Aquatic non-native species are often at low abundances where they are present, reaching high abundance in a small number of locations. Finally, local-scale impact can be estimated from abundance, but this requires knowledge of the abundance–impact relationship. Considering these multiple components enables understanding of non-native species impacts at broader spatial scales. Although the landscape-level impacts of aquatic non-native species may be high, the spatial distribution of site-level impacts is uneven, and highly impacted sites may be relatively uncommon. This heterogeneity in impacts provides an opportunity to optimize and prioritize non-native species management and prevention efforts.  相似文献   

6.
Invasive species in China — an overview   总被引:3,自引:0,他引:3  
China is a vast country with rich biodiversity, which makes China especially vulnerable to invasive species. It has a long history of introduction of non-native species, especially those with perceived beneficial impacts. Its rapid economic development, including an explosive growth in international trade and transportation, has increased the potential for new introductions. Currently, alien species are widespread in the country, occur in many ecosystems, represent most major taxonomic groups, and are introduced unintentionally as well as intentionally for cultivation. The paper lists various cases of invasive species which have caused significant threats or damages to local natural or artificial ecosystems, and indicates that two example industries (fresh water fisheries and lawn grasses) have brought or tend to bring in many invasive species and hence have caused or will cause changes and loss of biodiversity in local ecosystems. Based on these studies, it is suggested that China combat the problem through enhancing awareness, development of a database on invasive species, strengthening international co-operation, preparing case studies and introducing the necessary legislation, regulations and monitoring.  相似文献   

7.
8.
Human-mediated changes in island vegetation are, among others, largely caused by the introduction and establishment of non-native species. However, data on past changes in non-native plant species abundance that predate historical documentation and censuses are scarce. Islands are among the few places where we can track human arrival in natural systems allowing us to reveal changes in vegetation dynamics with the arrival of non-native species. We matched fossil pollen data with botanical status information (native, non-native), and quantified the timing, trajectories and magnitude of non-native plant vegetational change on 29 islands over the past 5000 years. We recorded a proportional increase in pollen of non-native plant taxa within the last 1000 years. Individual island trajectories are context-dependent and linked to island settlement histories. Our data show that non-native plant introductions have a longer and more dynamic history than is generally recognized, with critical implications for biodiversity baselines and invasion biology.  相似文献   

9.
Human alteration of the nitrogen (N) cycle has produced benefits for health and well-being, but excess N has altered many ecosystems and degraded air and water quality. US regulations mandate protection of the environment in terms that directly connect to ecosystem services. Here, we review the science quantifying effects of N on key ecosystem services, and compare the costs of N-related impacts or mitigation using the metric of cost per unit of N. Damage costs to the provision of clean air, reflected by impaired human respiratory health, are well characterized and fairly high (e.g. costs of ozone and particulate damages of $28 per kg NO(x)-N). Damage to services associated with productivity, biodiversity, recreation and clean water are less certain and although generally lower, these costs are quite variable (<$2.2-56 per kg N). In the current Chesapeake Bay restoration effort, for example, the collection of available damage costs clearly exceeds the projected abatement costs to reduce N loads to the Bay ($8-15 per kg N). Explicit consideration and accounting of effects on multiple ecosystem services provides decision-makers an integrated view of N sources, damages and abatement costs to address the significant challenges associated with reducing N pollution.  相似文献   

10.
Non-native species have invaded habitats worldwide, greatly impacting the structure and function of native communities and ecosystems. To better understand mechanisms of invasion impacts and how to restore highly impacted and transformed ecosystems, studies are needed that evaluate invader effects on both biotic communities and structural characteristics. On Santa Cruz Island in Galápagos we compared biotic (plant species richness, diversity, and community composition) and structural (canopy openness, forest height, and leaf litter) characteristics of a relic forest dominated by an endemic and highly threatened tree and a forest dominated by an invasive tree. The forests are located within the historical distribution of the endemic tree, which now occupies only 1% of its original extent. We found that the invaded forest had 42% lower native plant species richness and 17% less plant diversity than the endemic tree dominated forest. Additionally, with the invader there was 36% greater non-native plant species richness, 37% higher non-native plant diversity, and highly dissimilar plant composition when compared to the endemic-dominated forest. Additionally, the invaded forest had a more open and taller tree canopy and greater leaf litter cover than native forest. The presence of the invasive tree and the associated forest structural changes were the primary factors in models that best explained higher non-native diversity in the invaded forest. Our correlational results suggest that an invasive tree has significantly altered plant assemblage and forest structural characteristics in this unique ecosystem. Experiments that remove the invader and evaluate native plant community responses are needed to identify thresholds for practical restoration of this threatened and biologically unique native forest.  相似文献   

11.
Understanding the pathways and impacts of non-native species is important for helping prevent new introductions and invasions. This is frequently challenging in regions where human activities continue to promote new introductions, such as in Brazil, where aquaculture and sport fishing are mainly dependent on non-native fishes. Here, the non-native fish diversity of the Paranapanema River basin of the Upper Paraná River ecoregion, Brazil, was quantified fully for the first time. This river has been subject to considerable alteration through hydroelectric dam construction and concomitant development of aquaculture and sport fishing. Through compilation of a non-native fish inventory by literature review, with complementary records from recent field studies, analyses were completed on the timings of introduction, and the taxonomy, origin and introduction vectors of the non-native fishes. A total of 47 non-native fishes are now present across the basin. Of these, 24 invaded from the Lower Paraná River following construction of Itaipu Dam that connected previously unconnected fish assemblages. Activities including fish stocking, aquaculture and sport angling continue to result in new introductions. Discounting Itaipu invasions, the introduction rate between 1950 and 2014 was approximately one new introduction every 3 years. Introduced fish were mainly of the Cichlidae and Characidae families; most species were from other South American ecoregions, but fishes of African, Asian, North American and Central American origin were also present. These introductions have substantially modified the river’s fish fauna; when coupled with altered lentic conditions caused by impoundment, this suggests that the river’s native fishes are increasingly threatened.  相似文献   

12.

For insect herbivores, a critical niche requirement—possibly the critical niche requirement—is the presence of suitable host plants. Current research suggests that non-native plants are not as suitable as native plants for native herbivores, resulting in decreases in insect abundance and richness on non-native plants. Like herbivores, gall-forming insects engage in complex, species-specific interactions with host plants. Galls are plant tissue tumors (including bulbous or spindle-shaped protrusions on leaves, stems and other plant organs) that are induced by insects through physical or chemical damage (prompting plants to grow a protective tissue shell around the insect eggs and larvae). As such, we hypothesized that gall-inducing insect species richness would be higher on native than non-native plants. We also predicted higher gall-inducing insect species richness on woody than herbaceous plants. We used an extensive literature review in which we compiled gall host plant species by genus, and we assigned native or non-native (or mixed) status to each genus. We found that native plants host far more gall-inducing insect species than non-native plants; woody plants host more gall-inducing species than herbaceous plants; and native woody plants host the most gall-inducing species of all. Gall-inducing species generally are a very cryptic group, even for experts, and hence do not elicit the conservation efforts of more charismatic insects such as plant pollinators. Our results suggest that non-native plants, particularly non-native woody species, diminish suitable habitat for gall-inducing species in parallel with similar results found for other herbivores, such as Lepidopterans. Hence, the landscape-level replacement of native with non-native species, particularly woody ones, degrades taxonomically diverse gall-inducing species (and their inquilines and parasitoids), removing multiple layers of diversity from forest ecosystems.

  相似文献   

13.
Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.  相似文献   

14.
Understanding population dynamics requires reliable estimates of population density, yet this basic information is often surprisingly difficult to obtain. With rare or difficult‐to‐capture species, genetic surveys from noninvasive collection of hair or scat has proved cost‐efficient for estimating densities. Here, we explored whether noninvasive genetic sampling (NGS) also offers promise for sampling a relatively common species, the snowshoe hare (Lepus americanus Erxleben, 1777), in comparison with traditional live trapping. We optimized a protocol for single‐session NGS sampling of hares. We compared spatial capture–recapture population estimates from live trapping to estimates derived from NGS, and assessed NGS costs. NGS provided population estimates similar to those derived from live trapping, but a higher density of sampling plots was required for NGS. The optimal NGS protocol for our study entailed deploying 160 sampling plots for 4 days and genotyping one pellet per plot. NGS laboratory costs ranged from approximately $670 to $3000 USD per field site. While live trapping does not incur laboratory costs, its field costs can be considerably higher than for NGS, especially when study sites are difficult to access. We conclude that NGS can work for common species, but that it will require field and laboratory pilot testing to develop cost‐effective sampling protocols.  相似文献   

15.
Ings TC  Schikora J  Chittka L 《Oecologia》2005,144(3):508-516
Worldwide trade in non-native bumblebees remains largely unrestricted despite well-documented cases where introductions of non-native bees have gone dramatically wrong. Within Europe, indiscriminate importation of non-native populations of bumblebees (Bombus terrestris) for the pollination of glasshouse crops continues on a massive scale. However, no risk assessment has been conducted for these introductions, perhaps because B. terrestris is considered a native species, so shipping populations from one region to another has been implicitly assumed to present no risk. This view is clearly unjustified because Bombus terrestris populations differ significantly in their genetic makeup as demonstrated by strong differences in coat colour and behavioural traits. Therefore, for the first time we compare an important competitive trait, namely foraging performance, between commercially available B. terrestris populations in contrasting environments. We test whether commercially reared populations differ in their nectar foraging performance and whether this is influenced by both their source environment and the one they are introduced into. We do this by means of a reciprocal transplant experiment. Strong, consistent inter-population differences in performance occurred irrespective of test location: Canary Island bees (B. t. canariensis) were superior to Sardinian bees (B. t. sassaricus), which were generally superior to mainland European bees (B. t. terrestris). These inter-population differences in performance were largely explained by inter-population variation in forager size, with larger bees being superior foragers. However, even when body size was accounted for, “native” bees were not superior to transplanted non-native bees in all but one case. We conclude that non-native populations, especially those with large foragers, can be highly competitive foragers. This could lead to their establishment and displacement of native bees. Therefore, we recommend that unregulated movements of non-native B. terrestris populations within Europe should not be carried out without a full risk assessment.  相似文献   

16.
This study provides an updated catalogue of non-indigenous species (NIS) of polychaetes reported from the continental coasts of the Iberian Peninsula based on the available literature. A list of 23 introduced species were regarded as established and other 11 were reported as casual, with 11 established and nine casual NIS in the Atlantic coast of the studied area and 14 established species and seven casual ones in the Mediterranean side. The most frequent way of transport was shipping (ballast water or hull fouling), which according to literature likely accounted for the introductions of 14 established species and for the presence of another casual one. To a much lesser extent aquaculture (three established and two casual species) and bait importation (one established species) were also recorded, but for a large number of species the translocation pathway was unknown. About 25% of the reported NIS originated in the Warm Western Atlantic region, followed by the Tropical Indo West-Pacific region (18%) and the Warm Eastern Atlantic (12%). In the Mediterranean coast of the Iberian Peninsula, nearly all the reported NIS originated from warm or tropical regions, but less than half of the species recorded from the Atlantic side were native of these areas. The effects of these introductions in native marine fauna are largely unknown, except for one species (Ficopomatus enigmaticus) which was reported to cause serious environmental impacts. In other cases, the displacement of native species or economic damages are suspected.  相似文献   

17.
Mediterranean-climate regions (med-regions) are global hotspots of endemism facing mounting environmental threats associated with human-related activities, including the ecological impacts associated with non-native species introductions. We review freshwater fish introductions across med-regions to evaluate the influences of non-native fishes on the biogeography of taxonomic and functional diversity. Our synthesis revealed that 136 freshwater fish species (26 families, 13 orders) have been introduced into med-regions globally. These introductions, and local extirpations, have increased taxonomic and functional faunal similarity among regions by an average of 7.5% (4.6–11.4%; Jaccard) and 7.2% (1.4–14.0%; Bray–Curtis), respectively. Faunal homogenisation was highest in Chile and the western Med Basin, whereas sw Cape and the Aegean Sea drainages showed slight differentiation (decrease in faunal similarity) over time. At present, fish faunas of different med-regions have widespread species in common (e.g. Gambusia holbrooki, Cyprinus carpio, Oncorhynchus mykiss, Carassius auratus, and Micropterus salmoides) which are typically large-bodied, non-migratory, have higher physiological tolerance, and display fast population growth rates. Our findings suggest that intentional and accidental introductions of freshwater fish have dissolved dispersal barriers and significantly changed the present-day biogeography of med-regions across the globe. Conservation challenges in med-regions include understanding the ecosystem consequences of non-native species introductions at macro-ecological scales.  相似文献   

18.
Threat of non-native crayfish introductions into Turkey: global lessons   总被引:2,自引:0,他引:2  
Introductions of crayfish species from their home range to new environments have been carried out in many parts of the world. The most important introduced crayfish species are Procambarus clarkii, Pacifastacus leniusculus, Cherax destructor, C. quadricarinatus, Orconectes limosus, O. rusticus and Astacus leptodactylus. The environmental impact of crayfish introductions can be positive, negative or neutral. However, native crayfish populations in Europe have been negatively affected by introductions of non-indigenous crayfish species from America. Negative effects of non-native crayfish introductions included displacement of native crayfish species, transfer of disease (crayfish plague), consumption of fish eggs, reduction of fish stocks, consumption of large amounts of macrophytes, indirect and direct effects on other invertebrates and upsetting production in rice fields. As a result of non-native crayfish introductions, the natural harvest and crayfish industry in Europe have been severely affected. Large quantities of Turkish A. leptodactylus were harvested (approximately 7,000 tonnes annually) and exported to Europe before the crayfish plague was observed in these populations. The total harvest of A. leptodactylus in Turkey reduced dramatically to 320 in 1991 after the plague. Therefore, although Turkey currently has no known non-native crayfish species, there is a threat of non-native crayfish introduction in order to increase crayfish productions and subsequent harvest. The North American spiny-cheek crayfish, O. limosus, has been spreading quickly down the River Danube and could soon reach neighboring countries including Turkey. The North American signal crayfish, P. leniusculus is known from Greece and could be a threat to native stocks if it is introduced into Turkey for aquaculture. Additional threats may come from the release of other North American species, which are widely available through the aquarium trade. We conclude that the spread of non-native crayfish introductions throughout Turkey will increase local problems, because introductions of non-native crayfish in many parts of the world have been known to have caused important reductions in population density and numbers of native crayfish species. Furthermore, freshwater ecosystems may be altered by such introductions and the economic viability of native crayfish species fisheries could be severely reduced in Turkey.  相似文献   

19.
A method for the economic valuation of non-timber tropical forest products   总被引:1,自引:0,他引:1  
By drawing on quantitative studies in social anthropology, zoology, ethnobotany, and economics we present a method for conducting an economic valuation of non-timber forest products. A review of 24 studies suggests that the median value for non-timber forest products is about $50/ha/year. We discuss problems with past studies and suggest ways to get better estimates of output quantities, marginal costs, and prices.  相似文献   

20.
Abstract

Prevention and early detection are considered to be the most effective means of managing non-native invasive species that have serious ecological and economic impacts. Consequently, the study of those taxa that are still in an early stage of invasion but are highly likely to spread and to have a significant adverse impact in future is becoming an increasingly important issue in both the research on and management of invasive species. In Italy, one such species is Arctotheca calendula (L.) Levyns, a herbaceous plant of the Asteraceae family that is native to South Africa. Here, we present an overview of current knowledge on the distribution and potential impacts of this species in Italy, and we outline some features that are crucial to understanding and preventing its invasive spread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号