首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, cost-effective and rapid colorimetric method for any or all of Hg(2+), Pb(2+) and Cu(2+) detection using papain-functionalized gold nanoparticles (P-AuNPs) has been developed. Papain is a protein with seven cystein residues, which can selectively bind with Hg(2+), Pb(2+) and Cu(2+). We functionalized gold nanoparticles with papain. The P-AuNPs could be used to simultaneously detect Hg(2+), Pb(2+) and Cu(2+), and showed different responses to the three ions in an aqueous solution based on the aggregation-induced color change of gold nanoparticles. The P-AuNPs displayed the most obvious response to mercury ions in water in contrast to lead and copper ions, and the real water sample analysis verified the conclusion. The sensitivity of the detection system was influenced by the pH of the P-AuNPs solution, the concentration of P-AuNPs and the size of gold nanoparticles, and we found that larger gold nanoparticles contributed to more sensitive results. The detection system can detect as low as 200 nM Hg(2+), Pb(2+) or Cu(2+) using 42 nm gold nanoparticles. We expect our approach to have wide-ranging applications in the developing region for monitoring water quality in some areas.  相似文献   

2.
Metal complexes of salts of Hg, Cu, Cd, Pb, Zn, and Mn with chitosan and crosslinked chitosans were prepared, and their morphologies were studied using scanning electron microscopy and wide angle X-ray diffraction. The metal ions which were specifically and strongly complexed to the amino functions of chitosans, like Hg, showed smooth surface morphology inspite of large number of ions complexed (372 mg/g of chitosan). The presence of metal ions on the surface of the chitosans could be detected with decrease in metal ion binding, in the following sequence Hg > Cu > Cd > Zn > Pb > Mn. Particularly in the case of Pb ions, the presence of these ions is clearly seen on the surface of the polymer by SEM. The number of ions of Mn complexed on the polymers was too few (5 mg/g of chitosan) to be visible. SEM of Hg and Cu complexes do not show the “holes” observed in the crosslinked polymers as they bind specifically to amino groups of chitosan, but for Cd, Zn, Mn, and Pb complexes, these “holes” are clearly visible. These results are also in agreement with the morphologies studied by WAXRD. The metal complexation data for each of these metal ions was also in the same sequence.  相似文献   

3.
The detection of Pb(2+) with DNA-based biosensor is usually susceptible to severe interference from Hg(2+) because of the T-Hg(2+)-T interaction between Hg(2+) and T residues. In this study, we developed a rapid, sensitive, selective and label-free sensor for the detection of Pb(2+) in the presence of Hg(2+) based on the Pb(2+)-induced G-quadruplex formation with cationic water-soluble conjugated polymer (PMNT) as a "polymeric stain" to transduce optical signal. We selected a specific sequence oligonucleotide, TBAA (5'-GGAAGGTGTGGAAGG-3'), which can form a G-quadruplex structure upon the addition of Pb(2+). This strategy provided a promising alternative to Pb(2+) determination in the presence of Hg(2+) instead of the universal masking agents of Hg(2+) (such as CN(-), SCN(-)). Based on this observation, a simple "mix-and-detect" optical sensor for the detection of Pb(2+) was proposed due to the distinguishable optical properties of PMNT-ssDNA and PMNT-(G-quadruplex) complexes. By this method, we could identify micromolar Pb(2+) concentrations within 5min even with the naked eye. Furthermore, the detection limit was improved to the nanomolar range by the fluorometric method. We also successfully utilized this biosensor for the determination of Pb(2+) in tap water samples.  相似文献   

4.
Ion selectivities for Ca(2+) signaling pathways of 33 metal ions were examined based on the Ca(2+)-dependent on/off switching mechanism of calmodulin (CaM): Ca(2+) ion-induced selective binding of CaM-Ca(2+) ion complex to the target peptide was observed as an increase in surface plasmon resonance (SPR) signals. As the target peptide, M13 of 26-amino-acid residues derived from skeletal muscle myosin light-chain kinase was immobilized in the dextran matrix, over which sample solutions containing CaM and each metal ion were injected in a flow system. Large changes in SPR signals were also observed for Sr(2+), Ba(2+), Cd(2+), Pb(2+), Y(3+) and trivalent lanthanide ions, thereby indicating that not only Ca(2+) but also these metal ions induce the formation of CaM-M13-metal ion ternary complex. No SPR signal was, however, induced by Mg(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) and all monovalent metal ions examined. The latter silent SPR signal indicates that these ions, even if they bind to CaM, are incapable of forming the CaM-M13-metal ion ternary complex. Comparing the obtained SPR results with ionic radii of those metal ions, it was found that all cations examined with ionic radii close to or greater than that of Ca(2+) induced the formation of the CaM-metal-M13 ternary complex, whereas those with smaller ionic radii were not effective, or much less so. Since these results are so consistent with earlier systematic data for the effects of various metal ions on the conformational changes of CaM, it is concluded that the present SPR analysis may be used for a simple screening and evaluating method for physiologically relevant metal ion selectivity for the Ca(2+) signaling via CaM based on CaM/peptide interactions.  相似文献   

5.
An electronic DNAzyme sensor for highly sensitive detection of Pb(2+) is demonstrated by coupling the significant signal enhancement of the layer-by-layer (LBL) assembled quantum dots (QDs) with Pb(2+) specific DNAzymes. The presence of Pb(2+) cleaves the DNAzymes and releases the biotin-modified fragments, which further hybridize with the complementary strands immobilized on the gold substrate. The streptavidin-coated, QD LBL assembled nanocomposites were captured on the gold substrate through biotin-streptavidin interactions. Subsequent electrochemical signals of the captured QDs upon acid dissolution provide quantitative information on the concentrations of Pb(2+) with a dynamic range from 1 to 1000 nM. Due to the dramatic signal amplification by the numerous QDs, subnanomolar level (0.6 nM) of Pb(2+) can be detected. The proposed sensor also shows good selectivity against other divalent metal ions and thus holds great potential for the construction of general DNAzyme-based sensing platform for the monitoring of other heavy metal ions.  相似文献   

6.
We developed a novel electrochemical sensor for Hg(2+) detection using two mercury-specific oligonucleotide probes and streptavidin-horseradish peroxidase (HRP) enzymatic signal amplification. The two mercury-specific oligonucleotide probes comprised a thiolated capture probe and a biotinated signal probe. The thiolated capture probe was immobilized on a gold electrode. In the presence of Hg(2+), the thymine-Hg(2+)-thymine (T-Hg(2+)-T) interaction between the mismatched T-T base pairs directed the biotinated signal probe hybridizing to the capture probe and yielded a biotin-functioned electrode surface. HRP was then immobilized on the biotin-modified substrate via biotin-streptavidin interaction. The immobilized HRP catalyzed the oxidation of hydroquinone (H(2)Q) to benzoquinone (BQ) by hydrogen peroxide (H(2)O(2)) and the generated BQ was further electrochemically reduced at the modified gold electrode, producing a readout signal for quantitative detection of Hg(2+). The results showed that the enzyme-amplified electrochemical sensor system was highly sensitive to Hg(2+) in the concentration of 0.5 nM to 1 μM with a detection limit of 0.3 nM, and it also demonstrated excellent selectivity against other interferential metal ions.  相似文献   

7.
We have developed a surface plasmon resonance (SPR) system to monitor the cross-bridge attachment/detachment process within intact sarcomeres from mouse heart muscle. SPR occurs when laser light energy is transferred to surface plasmons that are resonantly excited in a metal (gold) film. This resonance manifests itself as a minimum in the reflection of the incident laser light and occurs at a characteristic angle. The angle of the SPR occurrence depends on the dielectric permittivity of the sample medium adjacent to the gold film. Purified sarcomeric preparations are immobilized onto the gold film in the presence of a relaxing solution. Replacement of the relaxing solution with increasing Ca(2+) concentration solution activates the cross-bridge interaction and produces an increase in the SPR angle. These results imply that the interaction of myosin heads with actin within an intact sarcomere changes the dielectric permittivity of the sarcomeric structure. In addition, we further verify that SPR measurements can detect the changes in the population of the attached cross-bridges with altered concentrations of phosphate, 2,3-butanedione monoxime, or adenosine triphosphate at a fixed calcium concentration, which have been shown to reduce the force and increase the cross-bridge population in attached state. Thus, our data provide the first evidence that the SPR technique allows the monitoring of the cross-bridge attachment/detachment process within intact sarcomeres.  相似文献   

8.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners.  相似文献   

9.
Three types of imaging, namely layer structure, electrochemical reaction, and enzyme sensor response, were achieved by applying surface plasmon resonance (SPR) measurement to an electrochemical biosensor. We constructed glucose oxidase based mediator type sensors on a gold electrode by spotting the mediator that contained horseradish peroxidase and spin coating the glucose oxidase film. The layer structure of the sensor was imaged by means of angle scanning SPR measurement. The single sensor spot (about 1 mm in diameter) consisted of about 100 x 100 pixels and its spatial structure was imaged. The multilayer structure of the enzyme sensor had a complex reflectance-incident angle curve and this required us to choose a suitable incident angle for mapping the redox state. We chose an incident angle that provided the most significant reflection intensity difference by using data obtained from two angle scanning SPR measurements at different electrode potentials. At this incident angle, we controlled the electrochemical states of the spotted mediator in cyclic voltammetry and imaged the degree to which the charged site density changed. Finally, we mapped the enzymatic activity around the mediator spot by the enzymatic reoxidation of pre-reduced mediator in the presence of glucose.  相似文献   

10.
Mercury ions (Hg(2+)) are a highly toxic and ubiquitous pollutants requiring rapid and sensitive on-site detection methods in the environment and foods. Herein, we report an envanescent wave DNA-based biosensor for rapid and very sensitive Hg(2+) detection based on a direct structure-competitive detection mode. In this system, a DNA probe covalently immobilized onto a fiber optic sensor contains a short common oligonucleotide sequences that can hybidize with a fluorescently labeled complementary DNA. The DNA probe also comprises a sequence of T-T mismatch pairs that binds with Hg(2+) to form a T-Hg(2+)-T complex by folding of the DNA segments into a hairpin structure. With a structure-competitive mode, a higher concentration of Hg(2+) leads to less fluorescence-labeled cDNA bound to the sensor surface and thus to lower fluorescence signal. The total analysis time for a single sample, including the measurement and surface regeneration, was under 6 min with a Hg(2+) detection limit of 2.1 nM. The high specificity of the sensor was demonstrated by evaluating its response to a number of potentially interfering metal ions. The sensor's surface can be regenerated with a 0.5% SDS solution (pH 1.9) over 100 times with no significant deterioration of performance. This platform is potentially applicable to detect other heavy metal ions or small-molecule analytes for which DNA/aptamers can be used as specific sensing probes.  相似文献   

11.
Scanning electrochemical microscopy (SECM) combined with surface plasmon resonance (SPR), SECM-SPR, was applied for real-time detection of the incorporation of Cu(2+) by apo-metallothionein (apo-MT) immobilized on the SPR substrate and release of Cu(2+) from surface-confined metallothionein (MT). Cu(2+) anodically stripped from a Cu-coated SECM Au tip was sequestered by apo-MT upon its diffusion to the SPR substrate, and release of Cu(2+) by MT was accomplished by generating protons via oxidation of hydroquinone at the tip. The high sensitivity of the SPR instrument is capable of following the structural and compositional changes of MT molecules during the metal sequestration and release processes. Due to the enhanced mass transfer rate at the SECM tip, the complication of mass transfer limitation on kinetic measurements, commonly encountered in flow injection SPR, is circumvented. The time-resolved SPR response reveals stepwise changes among three stable MT structures and allows the number of copper ions coordinated in each structure to be determined. The numbers of copper ions incorporated by each MT molecule in the three structures were determined to be 5, 9, and 12. This work expands the SECM-SPR approach to assessments of the dynamics and affinity of binding of small ions to surface-confined proteins and to studies of proteins that do not undergo facile electron transfer reactions.  相似文献   

12.
The purpose of this work is to characterize the interactions of cyclooctapeptides (CP) containing glutamyl and/or cysteinyl residues with common heavy-metal ions in order to facilitate the design of cyclopeptides as sensors for metal ions. Isothermal titration calorimetry studies show that cyclooctapeptides containing glutamyl and/or cysteinyl residues bind these Hg(2+) and Pb(2+) over Cd(2+) and other common metal ions. Differential binding isotherms, in their interactions with Hg(2+), support a two-binding site model, whereas pertinent interactions with Pb(2+) support a 2:1 stoichiometry, suggesting a CP/Pb(2+)/CP mode of complexation. The cyclooctapeptide containing both glutamyl and cysteinyl residues shows a significant binding affinity for Hg(2+) (K(a)=7.6x10(7)M(-1)), which is both enthalpically and entropically driven. The fluorescence of these cyclooctapeptides showed pronounced fluorescence quenching responses to Hg(2+) over Pd(2+) and Cd(2+). Stern-Volmer analyses of the dependence of fluorescence intensity on Hg(2+) and Pb(2+) are reported. The observed trends are useful for the design of Hg(2+) sensors based on fluorophore-tagged cyclooctapeptides.  相似文献   

13.
A novel capacitance biosensor based on synthetic phytochelatins for sensitive detection of heavy metals is described. Synthetic phytochelatin (Glu-Cys)(20)Gly (EC20) fused to the maltose binding domain protein was expressed in Escherichia coli and purified for construction of the biosensor. The new biosensor was able to detect Hg(2+), Cd(2+), Pb(2+), Cu(2+) and Zn(2+) ions in concentration range of 100 fM-10 mM, and the order of sensitivity was S(Zn)>S(Cu)>S(Hg)>S(Cd) congruent with S(Pb). The biological sensing element of the sensor could be regenerated using EDTA and the storage stability of the biosensor was 15 days.  相似文献   

14.
A universal label-free metal ion sensor design strategy was developed on the basis of a metal ion-specific DNA/RNA-cleaving DNAzyme and a G-quadruplex DNAzyme. In this strategy, the substrate strand of the DNA/RNA-cleaving DNAzyme was designed as an intramolecular stem-loop structure, and a G-rich sequence was caged in the double-stranded stem and could not form catalytically active G-quadruplex DNAzyme. The metal ion-triggered cleavage of the substrate strand could result in the release of the G-rich sequence and subsequent formation of a catalytic G-quadruplex DNAzyme. The self-blocking mechanism of the G-quadruplex DNAzyme provided the sensing system with a low background signal. The signal amplifications of both the DNA/RNA-cleaving DNAzyme and the G-quadruplex DNAzyme provided the sensing system with a high level of sensitivity. This sensor design strategy can be used for metal ions with reported specific DNA/RNA-cleaving DNAzymes and extended for metal ions with unique properties. As examples, dual DNAzymes-based Cu(2+), Pb(2+) and Hg(2+) sensors were designed. These "turn-on" colorimetric sensors can simply detect Cu(2+), Pb(2+) and Hg(2+) with high levels of sensitivity and selectivity, with detection limits of 4nM, 14nM and 4nM, respectively.  相似文献   

15.
A direct human ferritin immunosensor was developed using anti-human ferritin monoclonal antibodies (MAbs) immobilized on the gold surface of a self-assembled surface plasmon resonance (SPR) apparatus. A kind of self-assembled monolayer (SAM) prepared by cystamine-glutaraldehyde method was applied to immobilize the MAbs. The reusability of the sensor chip adopting the SAM was found to be better than the other immobilization methods including adsorption, protein A, concanavalin A method. Ten cycles of measurements could be performed on the same chip regenerated with a 0.1M HCl solution. A linear relationship existed between the angle shifts (millidegrees) and the log values of ferritin concentrations in the range from 0.2 to 200 ng/ml in buffer and human serum. When used for 15 days, the angle shifts were all >95% of those on the response at the first day. A 10 M NaOH solution was used for clearing nonspecific binding in human serum. Correlation coefficient was 0.991 between this SPR method and chemiluminescent immunoassay for determination of ferritin in clinical human serum samples. The SPR sensor offers advantages of simplicity of immobilization, high sensitivity, high specificity, low sample requirement, high reusability, no label and no pretreatment etc.  相似文献   

16.
A surface plasmon resonance (SPR)-immunosensor for detection of benzo[a]pyrene (BaP) is developed by using a model BaP-hapten compound, BaP-bovine serum albumin conjugate (BaP-BSA), and an anti-BaP-BSA monoclonal antibody. BaP-BSA conjugate is immobilized on a gold thin-film sensor chip by means of simple physical adsorption. The number of BaP-hapten units in BaP-BSA conjugate is estimated to be 28 from the difference in molecular weight (MW) between BaP-BSA conjugate and BSA based on the results of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) measurement. Anti-BaP-BSA antibody on contact with the BaP-BSA conjugate immobilized sensor chip causes an increase in the incident angle of the sensor chip. Binding of anti-BaP-BSA antibody with surface-immobilized BaP-BSA conjugate is inhibited by the presence of BaP in analyte solution, because of the inhibition effect of BaP. The SPR immunosensor for BaP functioning with the indirect competitive immunoreaction of anti-BaP-BSA antibody between the analyte (BaP) in testing solution and the BaP-BSA conjugate immobilized on the sensor chip provides a rapid determination (response time: ca. 15 min) of BaP in the concentration range of 0.01-1000 ppb. The antibody anchored to the sensor chip by antigen-antibody binding is removed on treatment with a pepsin solution (pH 2.0) for few minutes. The SPR sensor chip is found to be reusable for more than 20 times with a little decrease (<7%) in the sensor response. Detection of BaP by direct competitive immunoreactions is also carried out by enzyme-linked immunosorbent assay (ELISA). The concentration of BaP could be determined as low as 0.01 ppb and 2 ppb using the SPR sensor and the ELISA method, respectively. The SPR sensor is found to detect BaP selectively in the presence of 2-hydroxybiphenyl (HBP); the incident angle shift of the SPR sensor for BaP is found to be same irrespective to the presence or the absence of a same concentration (as much as 30 ppb) of HBP together.  相似文献   

17.
A molecularly imprinted polymer (MIP) film for domoic acid (DA) was synthesised by direct photo-grafting onto a gold chip suitable for a surface plasmon resonance (SPR) based bioanalytical instrument system, the BIAcore 3000. The gold surface was first functionalised with a self-assembled monolayer of 2-mercaptoethylamine and subsequent carbodiimide chemistry was performed for covalent attachment of the photoinitiator, 4,4'-azobis(cyanovaleric acid). This ensured that the formation of the MIP thin film, comprising 2-(diethylamino) ethyl methacrylate as functional monomer and ethylene glycol dimethacrylate as cross-linker, occurred only at the surface level. Optimisation and control over the grafting procedure were achieved using contact angle measurements and atomic force microscope (AFM) imaging. The surface grafting resulted in the formation of thin and homogeneous MIP film with thickness of 40 nm. A competitive binding assay was performed with free DA and its conjugate with horseradish peroxidase, which was used as a refractive label. The sensor was evaluated for its sensitivity, cross-reactivity, and robustness by using a BIAcore 3000. Likewise, monoclonal antibodies acting as natural receptors for the toxin were studied with the same BIAcore system. Results of a comparison between the artificial and natural receptors are reported. In contrast to monoclonal antibodies, the regeneration of MIP chip did not affect its recognition properties and continuous measurement was possible over a period of at least 2 months.  相似文献   

18.
A surface plasmon resonance (SPR) waveguide immunosensor fabricated by germanium-doped silicon dioxide was investigated in this study. The designed waveguide sensor consisted of a 10 microm SiO(2) substrate layer (n=1.469), a 10 microm Ge-SiO(2) channel guide (n=1.492) and a 50 nm gold film layer for immobilization of biomolecules and SPR signal detection. The resultant spectral signal was measured by a portable spectrophotometer, where the sensor was aligned by a custom-designed micro-positioner. The results of the glycerol calibration standards showed that the resonance wavelength shifted from 628 to 758 nm due to changes of refractive index from 1.36 to 1.418. Flow-through immunoassay on waveguide sensors also showed the interactions of protein A, monoclonal antibody (mAb ALV-J) and avian leucosis virus (ALVs) resulted in wavelength shifting of 4.17, 3.03 and 2.18 nm, respectively. The SPR dynamic interaction could also be demonstrated successfully in 4 min as the sensor was integrated with a lateral flow nitrocellulose strip. These results suggest that SPR detection could be carried out on designed waveguide sensor, and the integration of nitrocellulose strip for sample filtering and fluid carrier would facilitate applications in point-of-care portable system.  相似文献   

19.
A heavy metal ion sensor was constructed by cross-linking melanin onto the gold electrode of quartz crystal microbalance (QCM). A mercury ion sensitivity of 518+/-37 Hz/ppm was observed, a substantial increase in sensitivity compared to previous reports of 10-50 Hz/ppm with the limit of detection at 5 ppb. Detection of other metal ions including Sn(2+), Ge(4+), Li(+), Zn(2+), Cu(2+), Bi(3+), Co(2+), Al(3+), Ni(2+), Ag(+), and Fe(3+) were also performed. Unexpectedly, binding of Mn(7+), Pb(2+), Cd(2+), and Cr(3+) increased resonant frequencies. The surface profile of melanin thin film upon binding to metal ions was investigated by atomic force microscopy (AFM). Structural change of melanin upon binding to metal ions was characterized by circular dichroism and by infrared spectroscopy. The current study provides the first example of melanin-coated piezoelectric sensor showing high sensitivity and selectivity to metal ions.  相似文献   

20.
This communication describes preparation, characterization, and the evaluation of sorption properties of a calix[4]arene-based chitosan polymer (C[4]BCP). C[4]BCP was used to sorption studies of some heavy metal cations (Co(2+), Ni(2+), Cu(2+), Cd(2+)(,) Hg(2+) and Pb(2+)) and dichromate anions (Cr(2)O(7)(2-)/HCr(2)O(7)(-)) as sorbent material. Also the supporting material (chitosan) was used for comparison in these experiments. The results for heavy metal cations showed that C[4]BCP was excellent sorbent and the effect of chitosan was low. In the sorption studies of dichromate anions, C[4]BCP was highly effective sorbent at pH 1.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号