首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A metagenome expression library was created from Trinervitermes trinervoides termite hindgut symbionts and subsequently screened for feruloyl esterase (FAE) activities, resulting in seven recombinant fosmids conferring feruloyl esterase phenotypes. The amino acid sequence lengths of the seven FAE encoding open reading frames (ORFs) ranged from 260 to 274 aa and encoded polypeptides of between 28.9 and 31.4 kDa. The highest sequence identity scores for the seven ORFs against the GenBank database were between 45 and 59 % to a number of carboxyl ester hydrolyses. The seven FAE primary structures contained sequence motifs that correspond well with a classical pentapeptide (G-x-S-x-G) serine hydrolyse signature motif which harbours the catalytic serine residue in other FAE families. Six of the seven fae genes were successfully expressed heterologously in Escherichia coli, and the purified enzymes exhibited temperature optima range of 40–70 °C and the pH optima of between 6.5 and 8.0. The k cat/K M ratios for the six characterised FAEs showed the following order of substrate preference: methyl sinapate?>?methyl ferulate?>?ethyl ferulate. All six FAEs showed poor conversion rates against methyl p-coumarate and methyl caffeate, both of which lacked the methoxy (O–CH3) group substituent on the aromatic ring of the ester substrates, emphasising the requirement for at least one methoxy group on the aromatic ring of the hydroxycinnamic acid ester substrate for optimal FAE activity.  相似文献   

2.
Feruloyl esterase (FAE) catalyzes the hydrolysis of the ferulic and diferulic acids present in plant cell wall polysaccharides, and tannase catalyzes the hydrolysis of tannins to release gallic acid. The fungal tannase family in the ESTHER database contains various enzymes, including FAEs and tannases. Despite the importance of FAEs and tannases in bioindustrial applications, three‐dimensional structures of the fungal tannase family members have been unknown. Here, we determined the crystal structure of FAE B from Aspergillus oryzae (AoFaeB), which belongs to the fungal tannase family, at 1.5 Å resolution. AoFaeB consists of a catalytic α/β‐hydrolase fold domain and a large lid domain, and the latter has a novel fold. To estimate probable binding models of substrates in AoFaeB, an automated docking analysis was performed. In the active site pocket of AoFaeB, residues responsible for the substrate specificity of the FAE activity were identified. The catalytic triad of AoFaeB comprises Ser203, Asp417, and His457, and the serine and histidine residues are directly connected by a disulfide bond of the neighboring cysteine residues, Cys202 and Cys458. This structural feature, the “CS‐D‐HC motif,” is unprecedented in serine hydrolases. A mutational analysis indicated that the novel structural motif plays essential roles in the function of the active site. Proteins 2014; 82:2857–2867. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Sato Y  Niimura Y  Yura K  Go M 《Gene》1999,238(1):93-101
Xylanases are classified into two families, numbered F/10 and G/11 according to the similarity of amino acid sequences of their catalytic domain (Henrissat, B., Bairoch, A., 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781-788). Three-dimensional structure of the catalytic domain of the family F/10 xylanase was reported (White, A., Withers, S.G., Gilkes, N.R., Rose, D.R., 1994. Crystal structure of the catalytic domain of the beta-1,4-glycanase Cex from Cellulomonas fimi. Biochemistry 33, 12546-12552). The domain was decomposed into 22 modules by centripetal profiles (Go, M., Nosaka, M., 1987. Protein architecture and the origin of introns. Cold Spring Harbor Symp. Quant. Biol. 52, 915-924; Noguti, T., Sakakibara, H., Go, M., 1993. Localization of hydrogen-bonds within modules in barnase. Proteins 16, 357-363). A module is a contiguous polypeptide segment of amino acid residues having a compact conformation within a globular domain. Collected 31 intron sites of the family F/10 xylanase genes from fungus were found to be correlated to module boundaries with considerable statistical force (p values <0.001). The relationship between the intron locations and protein structures provides supporting evidence for the ancient origin of introns, because such a relationship cannot be expected by random insertion of introns into eukaryotic genes, but it rather suggests pre-existence of introns in the ancestral genes of prokaryotes and eukaryotes. A phylogenetic tree of the fungal and bacterial xylanase sequences made two clusters; one includes both the bacterial and fungal genes, but the other consists of only fungal genes. The mixed cluster of bacterial genes without introns and the fungal genes with introns further supports the ancient origin of introns. Comparison of the conserved base sequences of introns indicates that sliding of a splice site occurred in Aspergillus kawachii gene by one base from the ancestral position. Substrate-binding sites of xylanase are localized on eight modules, and introns are found at both termini of six out of these functional modules. This result suggests that introns might play a functional role in shuffling the exons encoding the substrate-binding modules.  相似文献   

4.
A putative α/β hydrolase fold-encoding gene (locus tag TTE1809) from the genome of Thermoanaerobacter tengcongensis was cloned and expressed in Escherichia coli as a possible source of thermostable feruloyl esterase (FAE) for the production of antioxidant phenolic acids from biomass. Designated as TtFAE, the 33-kDa protein was purified to apparent homogeneity. The lipase-like sequence characteristics of TtFAE and its substrate specificity towards methyl ferulate, methyl sinapate, and methyl p-coumarate classify it as a new member of the type A FAEs. At 75°C, the enzyme retained at least 95% of its original activity for over 80 min; at 80°C, its half-life was found to be 50 min, rendering TtFAE a highly thermostable protein. Under different hydrolytic conditions, ferulic acid (FA) was shown to be released from feruloylated oligosaccharides prepared from triticale bran. An estimated recovery of 68 mg FA/100 g triticale bran was demonstrated by a 30% release of the total FA from triticale bran within a 5-h incubation period. Both the oxygen radical absorbing capacity values of the feruloylated oligosaccharides and free FA were also determined. Overall, this work introduces a new bacterial member to the growing family of plant cell wall degrading FAEs that at present is largely of fungal origin, and it benchmarks the bioproduction of FA from triticale bran.  相似文献   

5.

Background

Our understanding of how fungi evolved to develop a variety of ecological niches, is limited but of fundamental biological importance. Specifically, the evolution of enzymes affects how well species can adapt to new environmental conditions. Feruloyl esterases (FAEs) are enzymes able to hydrolyze the ester bonds linking ferulic acid to plant cell wall polysaccharides. The diversity of substrate specificities found in the FAE family shows that this family is old enough to have experienced the emergence and loss of many activities.

Methodology/Principal Findings

In this study we evaluate the relative activity of FAEs against a variety of model substrates as a novel predictive tool for Ascomycota taxonomic classification. Our approach consists of two analytical steps; (1) an initial unsupervised analysis to cluster the FAEs substrate specificity data which were generated by cultivation of 34 Ascomycota strains and then an analysis of the produced enzyme cocktail against 10 substituted cinnamate and phenylalkanoate methyl esters, (2) a second, supervised analysis for training a predictor built on these substrate activities. By applying both linear and non-linear models we were able to correctly predict the taxonomic Class (∼86% correct classification), Order (∼88% correct classification) and Family (∼88% correct classification) that the 34 Ascomycota belong to, using the activity profiles of the FAEs.

Conclusion/Significance

The good correlation with the FAEs substrate specificities that we have defined via our phylogenetic analysis not only suggests that FAEs are phylogenetically informative proteins but it is also a considerable step towards improved FAEs functional prediction.  相似文献   

6.
Recently, several natural steroids have been found to be esterified to long-chain fatty acids (FAE) in various mammalian tissues. The purpose of the present study was to determine the ability of a series of 3H-labeled steroids to serve as substrates for the formation and accumulation of such non-polar derivatives in intact cells, using the hormone-responsive ZR-75-1 human breast cancer cell line as model. All 14 steroids tested were found to be converted, directly or following further metabolism, to lipoidal ester derivatives. The percentage of intracellular steroids recovered as FAE derivatives was usually substantial (14-90%), especially in the case of C-19 steroids (75-90%). The composition of the lipoidal steroid fractions recovered from the labeled cell extracts was characterized by chromatographic comparison with synthetic steroid FAEs and by saponification of the steroid FAEs and identification of the released steroidal moieties. Following metabolism, most steroid substrates were converted into multiple lipoidal esters. Furthermore, 5 alpha-androstane-3 alpha, 17 beta-diol, 5 alpha-androstane-3 beta, 17 beta-diol, as well as androst-5-ene-3 beta, 17 beta-diol formed lipoidal diesters in addition to the monoester form. The high level of intracellular steroid FAE accumulation reported in this study suggests that these yet poorly known steroid derivatives may play important functions in the regulation of steroid hormone metabolism and action.  相似文献   

7.
Family 28 belongs to the largest families of glycoside hydrolases. It covers several enzyme specificities of bacterial, fungal, plant and insect origins. This study deals with all available amino acid sequences of family 28 members. First, it focuses on the detailed analysis of 115 sequences of polygalacturonases yielding their evolutionary tree. The large data set allowed modification of some of the existing family 28 sequence characteristics and to draw the sequence features specific for bacterial and fungal exopolygalacturonases discriminating them from the endopolygalacturonases. The evolutionary tree reflects both the taxonomy and specificity so that bacterial, fungal and plant enzymes form their own clusters, the endo- and exo-mode of action being respected, too. The only insect (animal) representative is most related to fungal endopolygalacturonases. The present study brings further: (i) the analysis of available rhamnogalacturonase sequences; (ii) the elucidation of relatedness between the recently added member, the endo-xylogalacturonan hydrolase and the rest of the family; and (iii) revealing the sequence features characteristic of the individual enzyme specificities and the evolutionary relationships within the entire family 28. The disulfides common for the individual enzyme groups were also proposed. With regard to functionally important residues of polygalacturonases, xylogalacturonan hydrolase possesses all of them, while the rhamnogalacturonases, known to lack the histidine residue (His223; Aspergillus niger polygalacturonase II numbering), have a further tyrosine (Tyr291) replaced by a conserved tryptophan. Evolutionarily, the xylogalacturonan hydrolase is most related to fungal exopolygalacturonases and the rhamnogalacturonases form their own cluster on the adjacent branch.  相似文献   

8.
9.
10.
Benzoic acid esterases and ferulic acid esterases (FAE) are enzymes with different profiles of substrate specificity. An extracellular esterase (EstBC) from culture supernatants of the edible basidiomycete fungus Auricularia auricula-judae was purified by anion exchange chromatography, followed by preparative isoelectric focusing and hydrophobic interaction chromatography. EstBC showed a molecular mass of 36 kDa and an isoelectric point of 3.2 along with broad pH and temperature windows similar to fungal FAEs. However, EstBC exhibited also characteristics of a benzoic acid esterase acting on both benzoates and cinnamates, and most efficiently on methyl and ethyl benzoate, methyl 3-hydroxybenzoate and methyl salicylate. Feruloyl saccharides as well as lipase substrates, such as long chain fatty acids esterified with glycerol, polyethoxylated sorbitan and p-nitrophenol were not hydrolyzed. Protein database analyses with tryptic peptides of EstBC solely yielded hits regarding hypothetical proteins belonging to the alpha/beta hydrolase family. The uncommon substrate specificity of EstBC concomitant with a lack of sequence homology to known enzymes suggests a new type of enzyme.  相似文献   

11.
The tannase protein sequences of 149 bacteria and 36 fungi were retrieved from NCBI database. Among them only 77 bacterial and 31 fungal tannase sequences were taken which have different amino acid compositions. These sequences were analysed for different physical and chemical properties, superfamily search, multiple sequence alignment, phylogenetic tree construction and motif finding to find out the functional motif and the evolutionary relationship among them. The superfamily search for these tannase exposed the occurrence of proline iminopeptidase-like, biotin biosynthesis protein BioH, O-acetyltransferase, carboxylesterase/thioesterase 1, carbon–carbon bond hydrolase, haloperoxidase, prolyl oligopeptidase, C-terminal domain and mycobacterial antigens families and alpha/beta hydrolase superfamily. Some bacterial and fungal sequence showed similarity with different families individually. The multiple sequence alignment of these tannase protein sequences showed conserved regions at different stretches with maximum homology from amino acid residues 389–469 and 482–523 which could be used for designing degenerate primers or probes specific for tannase producing bacterial and fungal species. Phylogenetic tree showed two different clusters; one has only bacteria and another have both fungi and bacteria showing some relationship between these different genera. Although in second cluster near about all fungal species were found together in a corner which indicates the sequence level similarity among fungal genera. The distributions of fourteen motifs analysis revealed Motif 1 with a signature amino acid sequence of 29 amino acids, i.e. GCSTGGREALKQAQRWPHDYDGIIANNPA, was uniformly observed in 83.3 % of studied tannase sequences representing its participation with the structure and enzymatic function.  相似文献   

12.
Three novel antimicrobial peptides designated ToAMP1, ToAMP2 and ToAMP3 were purified from Taraxacum officinale flowers. Their amino acid sequences were determined. The peptides are cationic and cysteine-rich and consist of 38, 44 and 42 amino acid residues for ToAMP1, ToAMP2 and ToAMP3, respectively. Importantly, according to cysteine motifs, the peptides are representatives of two novel previously unknown families of plant antimicrobial peptides. ToAMP1 and ToAMP2 share high sequence identity and belong to 6-Cys-containing antimicrobial peptides, while ToAMP3 is a member of a distinct 8-Cys family. The peptides were shown to display high antimicrobial activity both against fungal and bacterial pathogens, and therefore represent new promising molecules for biotechnological and medicinal applications.  相似文献   

13.
Feruloyl esterases (Faes) are a subclass of the carboxylic esterases that hydrolyze the ester bonds between ferulic acid and polysaccharides in plant cell walls. Until now, the biochemical characteristics of FAEs from Bacillus spp. have not been reported. In this study, a strain with high activity of FAEs, Bacillus amyloliquefaciens H47 was screened from 122 Bacillus – type strains. Finally, three FAEs (BaFae04, BaFae06, and BaFae09) were identified. Comparing with other bacterial FAEs, these novel FAEs exhibited low sequence identities (less than 30%). The profiles of 52 esterase substrates showed that the three FAEs had a broad substrate spectrum and could effectively hydrolyze several common FAE substrates, such as methyl ferulate, ethyl caffeate, methyl p-coumarate, methyl sinapate, and chlorogenic acid. Furthermore, the three FAEs also can release ferulic acid from destarched wheat bran. They showed maximal activity with an optimal pH of 8.0 at 30 °C, 35 °C, and 40 °C, respectively. BaFae04 showed high stability in the temperature range of 25–60 °C for 1 h and retained 59% of its activity at 60 °C. The present study displays some useful characteristics of FAEs for potential industrial application and contributes to our understanding of FAEs.  相似文献   

14.
Three mutanase (alpha-1,3-glucanase)-producing microorganisms isolated from soil samples were identified as a relatives of Paenibacillus. A mutanase was purified to homogeneity from cultures of each, and the molecular masses of the purified enzymes were approximately 132, 141, and 141kDa, respectively. The corresponding three genes for mutanases were cloned by PCR using primers designed from each N-terminal amino acid sequence. Another mutanase-like gene from one strain was also cloned by PCR using primers designed from conserved amino acid sequences among known mutanases. Consequently, four mutanase-like genes were sequenced. The genes contained long open reading frames of 3411 to 3915bp encoding 1136 to 1304 amino acids. The deduced amino acid sequences of the mutanases showed relatively high similarity to those of a mutanase (E16590) from Bacillus sp. RM1 with 46.9% to 73.2% identity and an alpha-1,3-glucanase (AB248056) from Bacillus circulans KA-304 with 46.7% to 70.4% identity. Phylogenetic analysis based on the amino acid sequences of the enzymes showed bacterial mutanases form a new family between fungal mutanases (GH family 71) and Streptomycetes mycodextranases (GH family 87).  相似文献   

15.
Ferulic acid (FA), a component of hemicellulose in plant cell walls, is a phenolic acid with several potential applications based on its antioxidant properties. Recent studies have shown that feruloyl esterase (FAE) is a key bacterial enzyme involved in FA production from agricultural biomass. In this study, we screened a library of 43 esterases from Streptomyces species and identified two enzymes, R18 and R43, that have FAE activity toward ethyl ferulate. In addition, we characterized their enzyme properties in detail. R18 and R43 showed esterase activity toward other hydroxycinnamic acid esters as well, such as methyl p-coumarate, methyl caffeate, and methyl sinapinate. The amino acid sequences of R18 and R43 were neither similar to each other, nor to other FAEs. We found that R18 and R43 individually showed the ability to produce FA from corn bran; however, combination with other Streptomyces enzymes, namely xylanase and α-l-arabinofuranosidase, increased FA production from biomass such as corn bran, defatted rice bran, and wheat bran. These results suggest that R18 and R43 are effective FAEs for the enzymatic production of FA from biomass.  相似文献   

16.
17.
Ketoacyl synthases are enzymes involved in fatty acid synthesis and can be classified into five families based on primary sequence similarity. Different families have different catalytic mechanisms. Developing cost-effective computational models to identify the family of ketoacyl synthases will be helpful for enzyme engineering and in knowing individual enzymes’ catalytic mechanisms. In this work, a support vector machine-based method was developed to predict ketoacyl synthase family using the n-peptide composition of reduced amino acid alphabets. In jackknife cross-validation, the model based on the 2-peptide composition of a reduced amino acid alphabet of size 13 yielded the best overall accuracy of 96.44% with average accuracy of 93.36%, which is superior to other state-of-the-art methods. This result suggests that the information provided by n-peptide compositions of reduced amino acid alphabets provides efficient means for enzyme family classification and that the proposed model can be efficiently used for ketoacyl synthase family annotation.  相似文献   

18.
A hypothetical protein AN1772.2 of Aspergillus nidulans was found to have a 56% identity with a known type C ferulic acid esterase (FAE) from Talaromyces stipitatus. In addition, it contained a 13-amino acid conserved region flanking the characteristic G-X-S-X-G motif of a serine esterase, suggesting a FAE function for the protein. The putative FAE was successfully cloned from the genomic DNA and expressed in Saccharomyces cerevisiae. The recombinant protein exhibited high FAE activities. Therefore, its function as an FAE was unequivocally determined. About 86% of the enzyme activity was found in the growth medium, indicating that the native signal peptide was effective in the yeast expression system. The recombinant FAE was purified to its homogeneity, and subsequently characterized. The FAE is stable over an unusually wide range of pH (4.0–9.5), has a pH optimum of 7.0, and a temperature optimum of 45°C. A substrate specificity profiling reveals that the enzyme is a type B FAE, despite its strong sequence homology with type C FAEs, raising an interesting question on the role of the conserved region in substrate specificity.  相似文献   

19.
Family profile analysis (FPA), described in this paper, compares all available homologous amino acid sequences of a target family with the profile of a probe family while conventional sequence profile analysis (Gribskov M, Lüthy R, Eisenberg D. Meth Enzymol 1990;183:146-159) considers only a single target sequence in comparison with the probe family. The increased input of sequence information in FPA expands the range for sequence-based recognition of structural relationships. In the FPA algorithm, Zscores of each of the target sequences, obtained from a probe profile search over all known amino acid sequences, are averaged and then compared with the scores for sequences of 100 reference families in the same probe family search. The resulting F-Zscore of the target family, expressed in "effective standard deviations" of the mean Zscores of the reference families, with value above a threshold of 3.5 indicates a statistically significant evolutionary relationship between the target and probe families. The sensitivity of FPA to sequence information was tested with several protein families where distant relationships have been verified from known tertiary protein architectures, which included vitamin B6-dependent enzymes, (beta/alpha)8-barrel proteins, beta-trefoil proteins, and globins. In comparison to other methods, FPA proved to be significantly more sensitive, finding numerous new homologies. The FPA technique is not only useful to test a suspected relationship between probe and target families but also identifies possible target families in profile searches over all known primary structures.  相似文献   

20.
We investigate the conservation of amino acid residue sequences in 21 DNA-binding protein families and study the effects that mutations have on DNA-sequence recognition. The observations are best understood by assigning each protein family to one of three classes: (i) non-specific, where binding is independent of DNA sequence; (ii) highly specific, where binding is specific and all members of the family target the same DNA sequence; and (iii) multi-specific, where binding is also specific, but individual family members target different DNA sequences. Overall, protein residues in contact with the DNA are better conserved than the rest of the protein surface, but there is a complex underlying trend of conservation for individual residue positions. Amino acid residues that interact with the DNA backbone are well conserved across all protein families and provide a core of stabilising contacts for homologous protein-DNA complexes. In contrast, amino acid residues that interact with DNA bases have variable levels of conservation depending on the family classification. In non-specific families, base-contacting residues are well conserved and interactions are always found in the minor groove where there is little discrimination between base types. In highly specific families, base-contacting residues are highly conserved and allow member proteins to recognise the same target sequence. In multi-specific families, base-contacting residues undergo frequent mutations and enable different proteins to recognise distinct target sequences. Finally, we report that interactions with bases in the target sequence often follow (though not always) a universal code of amino acid-base recognition and the effects of amino acid mutations can be most easily understood for these interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号