首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The World Health Organisation recommends outpatient influenza-like illness (ILI) and inpatient severe acute respiratory illness (SARI) surveillance. We evaluated two influenza surveillance systems in South Africa: one for ILI and another for SARI.

Methodology

The Viral Watch (VW) programme has collected virological influenza surveillance data voluntarily from patients with ILI since 1984 in private and public clinics in all 9 South African provinces. The SARI surveillance programme has collected epidemiological and virological influenza surveillance data since 2009 in public hospitals in 4 provinces by dedicated personnel. We compared nine surveillance system attributes from 2009–2012.

Results

We analysed data from 18,293 SARI patients and 9,104 ILI patients. The annual proportion of samples testing positive for influenza was higher for VW (mean 41%) than SARI (mean 8%) and generally exceeded the seasonal threshold from May to September (VW: weeks 21–40; SARI: weeks 23–39). Data quality was a major strength of SARI (most data completion measures >90%; adherence to definitions: 88–89%) and a relative weakness of the VW programme (62% of forms complete, with limited epidemiologic data collected; adherence to definitions: 65–82%). Timeliness was a relative strength of both systems (e.g. both collected >93% of all respiratory specimens within 7 days of symptom onset). ILI surveillance was more nationally representative, financially sustainable and expandable than the SARI system. Though the SARI programme is not nationally representative, the high quality and detail of SARI data collection sheds light on the local burden and epidemiology of severe influenza-associated disease.

Conclusions

To best monitor influenza in South Africa, we propose that both ILI and SARI should be under surveillance. Improving ILI surveillance will require better quality and more systematic data collection, and SARI surveillance should be expanded to be more nationally representative, even if this requires scaling back on information gathered.  相似文献   

2.

Introduction

Although WHO declared the world moving into the post-pandemic period on August 10, 2010, influenza A(H1N1) 2009 virus continued to circulate globally. Its impact was expected to continue during the 2010–11 influenza season. This study describes the nationwide surveillance findings of the pandemic and post-pandemic influenza periods in Taiwan and assesses the impact of influenza A(H1N1) 2009 during the post-pandemic period.

Methods

The Influenza Laboratory Surveillance Network consisted of 12 contract laboratories for collecting and testing samples with acute respiratory tract infections. Surveillance of emergency room visits and outpatient department visits for influenza-like illness (ILI) were conducted using the Real-Time Outbreak and Disease Surveillance system and the National Health Insurance program data, respectively. Hospitalized cases with severe complications and deaths were reported to the National Notifiable Disease Surveillance System.

Results

During the 2009–10 influenza season, pandemic A(H1N1) 2009 was the predominant circulating strain and caused 44 deaths. However, the 2010–11 influenza season began with A(H3N2) being the predominant circulating strain, changing to A(H1N1) 2009 in December 2010. Emergency room and outpatient department ILI surveillance displayed similar trends. By March 31, 2011, there were 1,751 cases of influenza with severe complications; 50.1% reported underlying diseases. Of the reported cases, 128 deaths were associated with influenza. Among these, 93 (72.6%) were influenza A(H1N1) 2009 and 30 (23.4%) A(H3N2). Compared to the pandemic period, during the immediate post-pandemic period, increased number of hospitalizations and deaths were observed, and the patients were consistently older.

Conclusions

Reemergence of influenza A(H1N1) 2009 during the 2010–11 influenza season had an intense activity with age distribution shift. To further mitigate the impact of future influenza epidemics, Taiwan must continue its multifaceted influenza surveillance systems, remain flexible with antiviral use policies, and revise the vaccine policies to include the population most at risk.  相似文献   

3.

Background

Google Flu Trends was developed to estimate US influenza-like illness (ILI) rates from internet searches; however ILI does not necessarily correlate with actual influenza virus infections.

Methods and Findings

Influenza activity data from 2003–04 through 2007–08 were obtained from three US surveillance systems: Google Flu Trends, CDC Outpatient ILI Surveillance Network (CDC ILI Surveillance), and US Influenza Virologic Surveillance System (CDC Virus Surveillance). Pearson''s correlation coefficients with 95% confidence intervals (95% CI) were calculated to compare surveillance data. An analysis was performed to investigate outlier observations and determine the extent to which they affected the correlations between surveillance data. Pearson''s correlation coefficient describing Google Flu Trends and CDC Virus Surveillance over the study period was 0.72 (95% CI: 0.64, 0.79). The correlation between CDC ILI Surveillance and CDC Virus Surveillance over the same period was 0.85 (95% CI: 0.81, 0.89). Most of the outlier observations in both comparisons were from the 2003–04 influenza season. Exclusion of the outlier observations did not substantially improve the correlation between Google Flu Trends and CDC Virus Surveillance (0.82; 95% CI: 0.76, 0.87) or CDC ILI Surveillance and CDC Virus Surveillance (0.86; 95%CI: 0.82, 0.90).

Conclusions

This analysis demonstrates that while Google Flu Trends is highly correlated with rates of ILI, it has a lower correlation with surveillance for laboratory-confirmed influenza. Most of the outlier observations occurred during the 2003–04 influenza season that was characterized by early and intense influenza activity, which potentially altered health care seeking behavior, physician testing practices, and internet search behavior.  相似文献   

4.

Background

In this study, we assess how effective pandemic and trivalent 2009-2010 seasonal vaccines were in preventing influenza-like illness (ILI) during the 2009 A(H1N1) pandemic in France. We also compare vaccine effectiveness against ILI versus laboratory-confirmed pandemic A(H1N1) influenza, and assess the possible bias caused by using non-specific endpoints and observational data.

Methodology and Principal Findings

We estimated vaccine effectiveness by using the following formula: VE  =  (PPV-PCV)/(PPV(1-PCV)) × 100%, where PPV is the proportion vaccinated in the population and PCV the proportion of vaccinated influenza cases. People were considered vaccinated three weeks after receiving a dose of vaccine. ILI and pandemic A(H1N1) laboratory-confirmed cases were obtained from two surveillance networks of general practitioners. During the epidemic, 99.7% of influenza isolates were pandemic A(H1N1). Pandemic and seasonal vaccine uptakes in the population were obtained from the National Health Insurance database and by telephonic surveys, respectively. Effectiveness estimates were adjusted by age and week. The presence of residual biases was explored by calculating vaccine effectiveness after the influenza period. The effectiveness of pandemic vaccines in preventing ILI was 52% (95% confidence interval: 30–69) during the pandemic and 33% (4–55) after. It was 86% (56–98) against confirmed influenza. The effectiveness of seasonal vaccines against ILI was 61% (56–66) during the pandemic and 19% (−10–41) after. It was 60% (41–74) against confirmed influenza.

Conclusions

The effectiveness of pandemic vaccines in preventing confirmed pandemic A(H1N1) influenza on the field was high, consistently with published findings. It was significantly lower against ILI. This is unsurprising since not all ILI cases are caused by influenza. Trivalent 2009-2010 seasonal vaccines had a statistically significant effectiveness in preventing ILI and confirmed pandemic influenza, but were not better in preventing confirmed pandemic influenza than in preventing ILI. This lack of difference might be indicative of selection bias.  相似文献   

5.

Background

The burden of the pandemic (H1N1) 2009 influenza might be underestimated if detection of the virus is mandated to diagnose infection. Using an alternate approach, we propose that a much higher pandemic burden was experienced in our institution.

Methodology/Principal Findings

Consecutive patients (n = 2588) presenting to our hospital with influenza like illness (ILI) or severe acute respiratory infection (SARI) during a 1-year period (May 2009–April 2010) were prospectively recruited and tested for influenza A by real-time RT-PCR. Analysis of weekly trends showed an 11-fold increase in patients presenting with ILI/SARI during the peak pandemic period when compared with the pre-pandemic period and a significant (P<0.001) increase in SARI admissions during the pandemic period (30±15.9 admissions/week) when compared with pre-pandemic (7±2.5) and post-pandemic periods (5±3.8). However, Influenza A was detected in less than one-third of patients with ILI/SARI [699 (27.0%)]; a majority of these (557/699, 79.7%) were Pandemic (H1N1)2009 virus [A/H1N1/09]. An A/H1N1/09 positive test was correlated with shorter symptom duration prior to presentation (p = 0.03). More ILI cases tested positive for A/H1N1/09 when compared with SARI (27.4% vs. 14.6%, P = 0.037). When the entire study population was considered, A/H1N1/09 positivity was associated with lower risk of hospitalization (p<0.0001) and ICU admission (p = 0.013) suggesting mild self-limiting illness in a majority.

Conclusion/Significance

Analysis of weekly trends of ILI/SARI suggest a higher burden of the pandemic attributable to A/H1N1/09 than estimates assessed by a positive PCR test alone. The study highlights methodological consideration in the estimation of burden of pandemic influenza in developing countries using hospital-based data that may help assess the impact of future outbreaks of respiratory illnesses.  相似文献   

6.
RN Guo  HZ Zheng  LQ Huang  Y Zhou  X Zhang  CK Liang  JY Lin  JF He  JQ Zhang 《PloS one》2012,7(7):e41403

Objectives

To understand the incidence of outpatient influenza cases in a subtropical area of China and the associated economic burden on patients'' families.

Methods

A hospital-based prospective study was conducted in Zhuhai City during 2008–2009. All outpatient influenza-like illness (ILI) cases were identified in 28 sentinel hospitals. A representative sample of throat swabs from ILI cases were collected for virus isolation using Madin-Darby canine kidney cells. The incidence of outpatient influenza cases in Zhuhai was estimated on the basis of the number of influenza patients detected by the sentinel sites. A telephone survey on the direct costs associated with illness was conducted as a follow-up.

Results

The incidence of influenza was estimated to be 4.1 per 1,000 population in 2008 and 19.2 per 1,000 population in 2009. Children aged <5 years were the most-affected population, suffering from influenza at the highest rates (34.3 per 1,000 population in 2008 and 95.3 per 1,000 population in 2009). A high incidence of 29.2–40.9 per 1000 population was also seen in young people aged 5–24 years in 2009. ILI activity and influenza virus isolations adopted a consistent seasonal pattern, with a summer peak in July 2008 and the longest epidemic period lasting from July–December 2009. The medical costs per episode of influenza among urban patients were higher than those for rural patients. A total of $1.1 million in direct economic losses were estimated to be associated with outpatient influenza during 2008–2009 in Zhuhai community.

Conclusions

Influenza attacks children aged <5 years in greater proportions than children in other age groups. Seasonal influenza 2008 and Pandemic influenza A (H1N1) 2009 had different epidemiological and etiological characteristics. Direct costs (mostly medical costs) impose an enormous burden on the patient family. Vaccination strategies for high-risk groups need to be further strengthened.  相似文献   

7.

Background

Limited data are available describing the clinical presentation and risk factors for admission to the intensive care unit for children with 2009 H1N1 infection.

Methods

We conducted a retrospective chart review of all hospitalized children with 2009 influenza A (H1N1) and 2008–09 seasonal influenza at The Children''s Hospital, Denver, Colorado.

Results

Of the 307 children identified with 2009 H1N1 infections, the median age was 6 years, 61% were male, and 66% had underlying medical conditions. Eighty children (26%) were admitted to the ICU. Thirty-two (40%) of the ICU patients required intubation and 17 (53%) of the intubated patients developed acute respiratory distress syndrome (ARDS). Four patients required extracorporeal membrane oxygenation. Eight (3%) of the hospitalized children died. Admission to the ICU was significantly associated with older age and underlying neurological condition. Compared to the 90 children admitted during the 2008–09 season, children admitted with 2009 H1N1 influenza were significantly older, had a shorter length of hospitalization, more use of antivirals, and a higher incidence of ARDS.

Conclusions

Compared to the 2008–09 season, hospitalized children with 2009 H1N1 influenza were much older and had more severe respiratory disease. Among children hospitalized with 2009 H1N1 influenza, risk factors for admission to the ICU included older age and having an underlying neurological condition. Children under the age of 2 hospitalized with 2009 H1N1 influenza were significantly less likely to require ICU care compared to older hospitalized children.  相似文献   

8.

Background

In Kenya, detailed data on the age-specific burden of influenza and RSV are essential to inform use of limited vaccination and treatment resources.

Methods

We analyzed surveillance data from August 2009 to July 2012 for hospitalized severe acute respiratory illness (SARI) and outpatient influenza-like illness (ILI) at two health facilities in western Kenya to estimate the burden of influenza and respiratory syncytial virus (RSV). Incidence rates were estimated by dividing the number of cases with laboratory-confirmed virus infections by the mid-year population. Rates were adjusted for healthcare-seeking behavior, and to account for patients who met the SARI/ILI case definitions but were not tested.

Results

The average annual incidence of influenza-associated SARI hospitalization per 1,000 persons was 2.7 (95% CI 1.8–3.9) among children <5 years and 0.3 (95% CI 0.2–0.4) among persons ≥5 years; for RSV-associated SARI hospitalization, it was 5.2 (95% CI 4.0–6.8) among children <5 years and 0.1 (95% CI 0.0–0.2) among persons ≥5 years. The incidence of influenza-associated medically-attended ILI per 1,000 was 24.0 (95% CI 16.6–34.7) among children <5 years and 3.8 (95% CI 2.6–5.7) among persons ≥5 years. The incidence of RSV-associated medically-attended ILI was 24.6 (95% CI 17.0–35.4) among children <5 years and 0.8 (95% CI 0.3–1.9) among persons ≥5 years.

Conclusions

Influenza and RSV both exact an important burden in children. This highlights the possible value of influenza vaccines, and future RSV vaccines, for Kenyan children.  相似文献   

9.
10.

Background

Since its appearance in 2009, the pandemic influenza A(H1N1) virus circulated worldwide causing several severe infections.

Methods

Respiratory samples from patients with 2009 influenza A(H1N1) and acute respiratory distress attending 24 intensive care units (ICUs) as well as from patients with lower respiratory tract infections not requiring ICU admission and community upper respiratory tract infections in the Lombardy region (10 million inhabitants) of Italy during the 2010–2011 winter-spring season, were analyzed.

Results

In patients with severe ILI, the viral load was higher in bronchoalveolar lavage (BAL) with respect to nasal swab (NS), (p<0.001) suggesting a higher virus replication in the lower respiratory tract. Four distinct virus clusters (referred to as cluster A to D) circulated simultaneously. Most (72.7%, n = 48) of the 66 patients infected with viruses belonging to cluster A had a severe (n = 26) or moderate ILI (n = 22). Amino acid mutations (V26I, I116M, A186T, D187Y, D222G/N, M257I, S263F, I286L/M, and N473D) were observed only in patients with severe ILI. D222G/N variants were detected exclusively in BAL samples.

Conclusions

Multiple virus clusters co-circulated during the 2010–2011 winter-spring season. Severe or moderate ILI were associated with specific 2009 influenza A(H1N1) variants, which replicated preferentially in the lower respiratory tract.  相似文献   

11.

Background

Mexico''s local and national authorities initiated an intense public health response during the early stages of the 2009 A/H1N1 pandemic. In this study we analyzed the epidemiological patterns of the pandemic during April–December 2009 in Mexico and evaluated the impact of nonmedical interventions, school cycles, and demographic factors on influenza transmission.

Methods and Findings

We used influenza surveillance data compiled by the Mexican Institute for Social Security, representing 40% of the population, to study patterns in influenza-like illness (ILIs) hospitalizations, deaths, and case-fatality rate by pandemic wave and geographical region. We also estimated the reproduction number (R) on the basis of the growth rate of daily cases, and used a transmission model to evaluate the effectiveness of mitigation strategies initiated during the spring pandemic wave. A total of 117,626 ILI cases were identified during April–December 2009, of which 30.6% were tested for influenza, and 23.3% were positive for the influenza A/H1N1 pandemic virus. A three-wave pandemic profile was identified, with an initial wave in April–May (Mexico City area), a second wave in June–July (southeastern states), and a geographically widespread third wave in August–December. The median age of laboratory confirmed ILI cases was ∼18 years overall and increased to ∼31 years during autumn (p<0.0001). The case-fatality ratio among ILI cases was 1.2% overall, and highest (5.5%) among people over 60 years. The regional R estimates were 1.8–2.1, 1.6–1.9, and 1.2–1.3 for the spring, summer, and fall waves, respectively. We estimate that the 18-day period of mandatory school closures and other social distancing measures implemented in the greater Mexico City area was associated with a 29%–37% reduction in influenza transmission in spring 2009. In addition, an increase in R was observed in late May and early June in the southeast states, after mandatory school suspension resumed and before summer vacation started. State-specific fall pandemic waves began 2–5 weeks after school reopened for the fall term, coinciding with an age shift in influenza cases.

Conclusions

We documented three spatially heterogeneous waves of the 2009 A/H1N1 pandemic virus in Mexico, which were characterized by a relatively young age distribution of cases. Our study highlights the importance of school cycles on the transmission dynamics of this pandemic influenza strain and suggests that school closure and other mitigation measures could be useful to mitigate future influenza pandemics. Please see later in the article for the Editors'' Summary  相似文献   

12.
Yang X  Yao Y  Chen M  Yang X  Xie Y  Liu Y  Zhao X  Gao Y  Wei L 《PloS one》2012,7(1):e28786

Background

Since May 2009, exposure of the population of Beijing, China to pH1N1 has resulted in an increase in respiratory illnesses. Limited information is available on the etiology and clinical characteristics of the influenza-like illness (ILI) that ensued in adults following the pH1N1 pandemic.

Methods

Clinical and epidemiological data of ILI in adults was collected. A total of 279 throat swabs were tested for twelve respiratory viruses using multiplex RT-PCR. Clinical characteristics of influenza A in outpatients versus test-negative patients were compared using Pearson''s χ2 and the Mann-Whitney U test. 190 swabs were tested for pH1N1 by virus isolation. Consultation rates for ILI were compared between 2009 and 2010.

Results

One or two virus were detected in 29% of the samples. Influenza A virus (FLU-A) accounted for 22.9% (64/279). Other viruses were present at a frequency less than 3.0%. Cough was significantly associated with Influenza A virus infection (χ2, p<0.001). The positive rate of FLU-A was consistent with changes in the ILI rate during the same period and there was a significant reduction in the incidence of ILI in 2010 when compared to 2009. During the 2010–2011 influenza season, the incidence peaked in January 2011 in Beijing and north China.

Conclusions

Exposure to pH1N1 had no impact on typical influenza seasonal peaks, although FLU-A remained the predominant virus for 2010 in Beijing. Symptomatically, cough was associated with FLU-A infection. The positive rate of influenza virus was consistent with changes in the ILI rate during the same period and there was a significant reduction in the incidence of ILI in 2010 when compared to that of 2009.  相似文献   

13.

Background

Influenza-like illness (ILI) may be caused by a variety of pathogens. Clinical observations are of little help to recognise myxovirus infection and implement appropriate prevention measures. The limited use of molecular tools underestimates the role of other common pathogens.

Objectives

During the early weeks of the 2009–2010 flu pandemic, a clinical and virological survey was conducted in adult and paediatric patients with ILI referred to two French University hospitals in Paris and Tours. Aims were to investigate the different pathogens involved in ILI and describe the associated symptoms.

Methods

H1N1v pandemic influenza diagnosis was performed with real time RT-PCR assay. Other viral aetiologies were investigated by the molecular multiplex assay RespiFinder19®. Clinical data were collected prospectively by physicians using a standard questionnaire.

Results

From week 35 to 44, endonasal swabs were collected in 413 patients. Overall, 68 samples (16.5%) were positive for H1N1v. In 13 of them, other respiratory pathogens were also detected. Among H1N1v negative samples, 213 (61.9%) were positive for various respiratory agents, 190 in single infections and 23 in mixed infections. The most prevalent viruses in H1N1v negative single infections were rhinovirus (62.6%), followed by parainfluenza viruses (24.2%) and adenovirus (5.3%). 70.6% of H1N1v cases were identified in patients under 40 years and none after 65 years. There was no difference between clinical symptoms observed in patients infected with H1N1v or with other pathogens.

Conclusion

Our results highlight the high frequency of non-influenza viruses involved in ILI during the pre-epidemic period of a flu alert and the lack of specific clinical signs associated with influenza infections. Rapid diagnostic screening of a large panel of respiratory pathogens may be critical to define and survey the epidemic situation and to provide critical information for patient management.  相似文献   

14.
15.

Introduction

Influenza infections present with wide-ranging clinical features. We aim to compare the differences in presentation between influenza and non-influenza cases among those with febrile respiratory illness (FRI) to determine predictors of influenza infection.

Methods

Personnel with FRI (defined as fever≥37.5°C, with cough or sore throat) were recruited from the sentinel surveillance system in the Singapore military. Nasal washes were collected, and tested using the Resplex II and additional PCR assays for etiological determination. Interviewer-administered questionnaires collected information on patient demographics and clinical features. Univariate comparison of the various parameters was conducted, with statistically significant parameters entered into a multivariate logistic regression model. The final multivariate model for influenza versus non-influenza cases was used to build a predictive probability clinical diagnostic model.

Results

821 out of 2858 subjects recruited from 11 May 2009 to 25 Jun 2010 had influenza, of which 434 (52.9%) had 2009 influenza A (H1N1), 58 (7.1%) seasonal influenza A (H3N2) and 269 (32.8%) influenza B. Influenza-positive cases were significantly more likely to present with running nose, chills and rigors, ocular symptoms and higher temperature, and less likely with sore throat, photophobia, injected pharynx, and nausea/vomiting. Our clinical diagnostic model had a sensitivity of 65% (95% CI: 58%, 72%), specificity of 69% (95% CI: 62%, 75%), and overall accuracy of 68% (95% CI: 64%, 71%), performing significantly better than conventional influenza-like illness (ILI) criteria.

Conclusions

Use of a clinical diagnostic model may help predict influenza better than the conventional ILI definition among young adults with FRI.  相似文献   

16.

Background

Transmitted HIV-1 drug resistance (TDR) is an ongoing public health problem, representing 10–20% of new HIV infections in many geographic areas. TDR usually arises from two main sources: individuals on antiretroviral therapy (ART) who are failing to achieve virologic suppression, and individuals who acquired TDR and transmit it while still ART-naïve. TDR rates can be impacted when novel antiretroviral medications are introduced that allow for greater virologic suppression of source patients. Although several new HIV medications were introduced starting in late 2007, including raltegravir, maraviroc, and etravirine, it is not known whether the prevalence of TDR was subsequently affected in 2008–2009.

Methodology/Principal Findings

We performed population sequence genotyping on individuals who were diagnosed with acute or early HIV (<6 months duration) and who enrolled in the Options Project, a prospective cohort, between 2002 and 2009. We used logistic regression to compare the odds of acquiring drug-resistant HIV before versus after the arrival of new ART (2005–2007 vs. 2008–2009). From 2003–2007, TDR rose from 7% to 24%. Prevalence of TDR was then 15% in 2008 and in 2009. While the odds of acquiring TDR were lower in 2008–2009 compared to 2005–2007, this was not statistically significant (odds ratio 0.65, 95% CI 0.31–1.38; p = 0.27).

Conclusions

Our study suggests that transmitted drug resistance rose from 2003–2007, but this upward trend did not continue in 2008 and 2009. Nevertheless, the TDR prevalence in 2008–2009 remained substantial, emphasizing that improved management strategies for drug-resistant HIV are needed if TDR is to be further reduced. Continued surveillance for TDR will be important in understanding the full impact of new antiretroviral medications.  相似文献   

17.

Background

The 2008–09 influenza season was the time in which the Department of Veterans Affairs (VA) utilized an electronic biosurveillance system for tracking and monitoring of influenza trends. The system, known as ESSENCE or Electronic Surveillance System for the Early Notification of Community-based Epidemics, was monitored for the influenza season as well as for a rise in influenza cases at the start of the H1N1 2009 influenza pandemic. We also describe trends noted in influenza-like illness (ILI) outpatient encounter data in VA medical centers during the 2008–09 influenza season, before and after the recognition of pandemic H1N1 2009 influenza virus.

Methodology/Principal Findings

We determined prevalence of ILI coded visits using VA''s ESSENCE for 2008–09 seasonal influenza (Sept. 28, 2008–April 25, 2009 corresponding to CDC 2008–2009 flu season weeks 40–16) and the early period of pandemic H1N1 2009 (April 26, 2009–July 31, 2009 corresponding to CDC 2008–2009 flu season weeks 17–30). Differences in diagnostic ICD-9-CM code frequencies were analyzed using Chi-square and odds ratios. There were 649,574 ILI encounters captured representing 633,893 patients. The prevalence of VA ILI visits mirrored the CDC''s Outpatient ILI Surveillance Network (ILINet) data with peaks in late December, early February, and late April/early May, mirroring the ILINet data; however, the peaks seen in the VA were smaller. Of 31 ILI codes, 6 decreased and 11 increased significantly during the early period of pandemic H1N1 2009. The ILI codes that significantly increased were more likely to be symptom codes. Although influenza with respiratory manifestation (487.1) was the most common code used among 150 confirmed pandemic H1N1 2009 cases, overall it significantly decreased since the start of the pandemic.

Conclusions/Significance

VA ESSENCE effectively detected and tracked changing ILI trends during pandemic H1N1 2009 and represents an important temporal alerting system for monitoring health events in VA facilities.  相似文献   

18.
Widgren K  Nielsen J  Mølbak K 《PloS one》2010,5(11):e13939

Background

To follow the impact of the 2009 influenza pandemic in Denmark, influenza surveillance was extended with a system monitoring potentially influenza-associated hospitalisations.

Methodology/Principal Findings

National administrative data from 2004–2010 from the automatic reporting of all hospital visits and admissions in Denmark (population 5.5 million) were used. In-patient hospitalisations linked to ICD-10 codes for potentially influenza-associated conditions (influenza, viral and bacterial pneumonia, respiratory distress, and febrile convulsion) were aggregated by week and age groups; <5 years, 5–24 years, 25–64 years and ≥65 years. Weekly numbers of influenza-associated hospitalisations were plotted to follow the course of the pandemic. We calculated the total numbers of influenza-associated hospitalisations in each influenza season (week 30 to week 15, the following year). Risk ratios of being admitted with an influenza-associated condition in this season (2009/2010) compared to the previous five seasons (2004/2005–2008/2009) were calculated using binary regression. During the pandemic season, influenza-associated hospitalisations peaked in week 47, 2009. The total number of influenza-associated hospitalisations was 38,273 compared to the median of previous seasons of 35,662 (p = 0.28). The risk ratio of influenza-associated hospitalisations during the pandemic season compared to previous seasons was 1.63 (95%CI 1.49–1.78) for 5–24 year-olds and ranged between 0.98 and 1.08 for the other three age groups.

Conclusions

The 2009 pandemic influenza did not lead to an overall increase in the number of influenza-associated hospitalisations in Denmark in the 2009/2010 season and could be managed within existing hospital capacity. However, there was a disproportionally large impact on the age group 5–24 years. The influenza-associated hospitalisations during the 2009/2010 pandemic influenza season bore the signature features of historical pandemics: A skewed age-pattern and early out of season transmission.  相似文献   

19.

Background

The public health response to pandemic influenza is contingent on the pandemic strain''s severity. In late April 2009, a potentially pandemic novel H1N1 influenza strain (nH1N1) was recognized. New York City (NYC) experienced an intensive initial outbreak that peaked in late May, providing the need and opportunity to rapidly quantify the severity of nH1N1.

Methods and Findings

Telephone surveys using rapid polling methods of approximately 1,000 households each were conducted May 20–27 and June 15–19, 2009. Respondents were asked about the occurrence of influenza-like illness (ILI, fever with either cough or sore throat) for each household member from May 1–27 (survey 1) or the preceding 30 days (survey 2). For the overlap period, prevalence data were combined by weighting the survey-specific contribution based on a Serfling model using data from the NYC syndromic surveillance system. Total and age-specific prevalence of ILI attributed to nH1N1 were estimated using two approaches to adjust for background ILI: discounting by ILI prevalence in less affected NYC boroughs and by ILI measured in syndromic surveillance data from 2004–2008. Deaths, hospitalizations and intensive care unit (ICU) admissions were determined from enhanced surveillance including nH1N1-specific testing. Combined ILI prevalence for the 50-day period was 15.8% (95% CI:13.2%–19.0%). The two methods of adjustment yielded point estimates of nH1N1-associated ILI of 7.8% and 12.2%. Overall case-fatality (CFR) estimates ranged from 0.054–0.086 per 1000 persons with nH1N1-associated ILI and were highest for persons ≥65 years (0.094–0.147 per 1000) and lowest for those 0–17 (0.008–0.012). Hospitalization rates ranged from 0.84–1.34 and ICU admission rates from 0.21–0.34 per 1000, with little variation in either by age-group.

Conclusions

ILI prevalence can be quickly estimated using rapid telephone surveys, using syndromic surveillance data to determine expected “background” ILI proportion. Risk of severe illness due to nH1N1 was similar to seasonal influenza, enabling NYC to emphasize preventing severe morbidity rather than employing aggressive community mitigation measures.  相似文献   

20.

Background

We assessed the severity of the 2009 influenza pandemic by comparing pandemic mortality to seasonal influenza mortality. However, reported pandemic deaths were laboratory-confirmed – and thus an underestimation – whereas seasonal influenza mortality is often more inclusively estimated. For a valid comparison, our study used the same statistical methodology and data types to estimate pandemic and seasonal influenza mortality.

Methods and Findings

We used data on all-cause mortality (1999–2010, 100% coverage, 16.5 million Dutch population) and influenza-like-illness (ILI) incidence (0.8% coverage). Data was aggregated by week and age category. Using generalized estimating equation regression models, we attributed mortality to influenza by associating mortality with ILI-incidence, while adjusting for annual shifts in association. We also adjusted for respiratory syncytial virus, hot/cold weather, other seasonal factors and autocorrelation. For the 2009 pandemic season, we estimated 612 (range 266–958) influenza-attributed deaths; for seasonal influenza 1,956 (range 0–3,990). 15,845 years-of-life-lost were estimated for the pandemic; for an average seasonal epidemic 17,908. For 0–4 yrs of age the number of influenza-attributed deaths during the pandemic were higher than in any seasonal epidemic; 77 deaths (range 61–93) compared to 16 deaths (range 0–45). The ≥75 yrs of age showed a far below average number of deaths. Using pneumonia/influenza and respiratory/cardiovascular instead of all-cause deaths consistently resulted in relatively low total pandemic mortality, combined with high impact in the youngest age category.

Conclusion

The pandemic had an overall moderate impact on mortality compared to 10 preceding seasonal epidemics, with higher mortality in young children and low mortality in the elderly. This resulted in a total number of pandemic deaths far below the average for seasonal influenza, and a total number of years-of-life-lost somewhat below average. Comparing pandemic and seasonal influenza mortality as in our study will help assessing the worldwide impact of the 2009 pandemic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号