首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Valant J  Drobne D 《Protoplasma》2012,249(3):835-842
Isolated digestive gland epithelium from a model invertebrate organism was used in an ex vivo system to assess the potential of nanoparticulate TiO2 to disrupt cell membranes. Primary particle size, surface area, concentration of particles in a suspension, and duration of exposure to TiO2 particles were all found to have effects, which are observed at concentrations of nano-TiO2 as low as 1 μg mL?1. The test system employed here can be used as a fast screening tool to assess biological potential of nanoparticles with similar chemical composition but different size, concentration, or duration of exposure. We discuss the potential of ex vivo tests to avoid some of the limitations of conventional in vitro tests.  相似文献   

2.
蚯蚓生物标记物在土壤生态风险评价中的应用   总被引:3,自引:0,他引:3  
史志明  徐莉  胡锋 《生态学报》2014,34(19):5369-5379
蚯蚓在土壤中行使了很多重要的生态功能,蚯蚓生物标记物常用作土壤污染风险评价研究。这篇综述的目的是探讨当前蚯蚓生物标记物研究是否可以应用到实际的土壤污染风险评价。1)讨论了蚯蚓生物标记物在土壤污染风险评价体系中的重要性,认为它是化学分析方法的有益补充,可以提供更为全面和客观的土壤污染信息;2)综述了相关研究中所使用的蚯蚓类型,土壤类型和生物标记物类型,及其它试验设计要素和最后结果的变异,认为目前蚯蚓生物标记物研究以实验室基础研究为主,筛选出了大量的生物标记物,一定程度上揭示了生物标记物的对各类典型污染物及其组合的应答机制;同时也认为,未来的蚯蚓生物标记物研究应该重点探讨将其应用到实际的土壤污染风险评价中的可行性及如何应用;3)目前不同研究之间从试验设计到结果都具有很大的变异,难以通过综合比较获得完全可靠的具有实践意义的结论和成果,因此,有必要通过建立标准化的蚯蚓生物标记物研究方法,推动生物标记物的研究工作;4)提出了蚯蚓生物标记物研究方法标准化的具体建议,推荐了蚯蚓生物标记物走向实际应用所需要解决的问题。  相似文献   

3.
Workshop participants agreed that genotoxicity tests in mammalian cells in vitro produce a remarkably high and unacceptable occurrence of irrelevant positive results (e.g. when compared with rodent carcinogenicity). As reported in several recent reviews, the rate of irrelevant positives (i.e. low specificity) for some studies using in vitro methods (when compared to this "gold standard") means that an increased number of test articles are subjected to additional in vivo genotoxicity testing, in many cases before, e.g. the efficacy (in the case of pharmaceuticals) of the compound has been evaluated. If in vitro tests were more predictive for in vivo genotoxicity and carcinogenicity (i.e. fewer false positives) then there would be a significant reduction in the number of animals used. Beyond animal (or human) carcinogenicity as the "gold standard", it is acknowledged that genotoxicity tests provide much information about cellular behaviour, cell division processes and cellular fate to a (geno)toxic insult. Since the disease impact of these effects is seldom known, and a verification of relevant toxicity is normally also the subject of (sub)chronic animal studies, the prediction of in vivo relevant results from in vitro genotoxicity tests is also important for aspects that may not have a direct impact on carcinogenesis as the ultimate endpoint of concern. In order to address the high rate of in vitro false positive results, a 2-day workshop was held at the European Centre for the Validation of Alternative Methods (ECVAM), Ispra, Italy in April 2006. More than 20 genotoxicity experts from academia, government and industry were invited to review data from the currently available cell systems, to discuss whether there exist cells and test systems that have a reduced tendency to false positive results, to review potential modifications to existing protocols and cell systems that might result in improved specificity, and to review the performance of some new test systems that show promise of improved specificity without sacrificing sensitivity. It was concluded that better guidance on the likely mechanisms resulting in positive results that are not biologically relevant for human health, and how to obtain evidence for those mechanisms, is needed both for practitioners and regulatory reviewers. Participants discussed the fact that cell lines commonly used for genotoxicity testing have a number of deficiencies that may contribute to the high false positive rate. These include, amongst others, lack of normal metabolism leading to reliance on exogenous metabolic activation systems (e.g. Aroclor-induced rat S9), impaired p53 function and altered DNA repair capability. The high concentrations of test chemicals (i.e. 10 mM or 5000 microg/ml, unless precluded by solubility or excessive toxicity) and the high levels of cytotoxicity currently required in mammalian cell genotoxicity tests were discussed as further potential sources of false positive results. Even if the goal is to detect carcinogens with short in vitro tests under more or less acute conditions, it does not seem logical to exceed the capabilities of cellular metabolic turnover, activation and defence processes. The concept of "promiscuous activation" was discussed. For numerous mutagens, the decisive in vivo enzymes are missing in vitro. However, if the substrate concentration is increased sufficiently, some other enzymes (that are unimportant in vivo) may take over the activation-leading to the same or a different active metabolite. Since we often do not use the right enzyme systems for positive controls in vitro, we have to rely on their promiscuous activation, i.e. to use excessive concentrations to get an empirical correlation between genotoxicity and carcinogenicity. A thorough review of published and industry data is urgently needed to determine whether the currently required limit concentration of 10mM or 5000 microg/ml, and high levels of cytotoxicity, are necessary for the detection of in vivo genotoxins and DNA-reactive, mutagenic carcinogens. In addition, various measures of cytotoxicity are currently allowable under OECD test guidelines, but there are few comparative data on whether different measures would result in different maximum concentrations for testing. A detailed comparison of cytotoxicity assessment strategies is needed. An assessment of whether test endpoints can be selected that are not intrinsically associated with cytotoxicity, and therefore are less susceptible to artefacts produced by cytotoxicity, should also be undertaken. There was agreement amongst the workshop participants that cell systems which are p53 and DNA-repair proficient, and have defined Phase 1 and Phase 2 metabolism, covering a broad set of enzyme forms, and used within the context of appropriately set limits of concentration and cytotoxicity, offer the best hope for reduced false positives. Whilst there is some evidence that human lymphocytes are less susceptible to false positives than the current rodent cell lines, other cell systems based on HepG2, TK6 and MCL-5 cells, as well as 3D skin models based on primary human keratinocytes also show some promise. Other human cell lines such as HepaRG, and human stem cells (the target for carcinogenicity) have not been used for genotoxicity investigations and should be considered for evaluation. Genetic engineering is also a valuable tool to incorporate missing enzyme systems into target cells. A collaborative research programme is needed to identify, further develop and evaluate new cell systems with appropriate sensitivity but improved specificity. In order to review current data for selection of appropriate top concentrations, measures and levels of cytotoxicity, metabolism, and to be able to improve existing or validate new assay systems, the participants called for the establishment of an expert group to identify the in vivo genotoxins and DNA-reactive, mutagenic carcinogens that we expect our in vitro genotoxicity assays to detect as well as the non-genotoxins and non-carcinogens we expect them not to detect.  相似文献   

4.
Numerous molecular, cellular, and physiological biomarkers have been used to assess the responses of marine animals to petroleum compounds. To be used in ecological risk assessment after an oil spill, a biomarker response needs to be linked to petroleum exposure and not strongly influenced by internal and external confounding factors. Biomarker responses to petroleum PAH, dominated by alklated two-and three-ringed aromatics, can be quite different than responses to pyrogenic PAH, dominated by four-and five-ringed aromatics. In many field sites there is a mixture of petrogenic and pyrogenic PAH, along with other contaminants, making it difficult to relate biomarker responses to a particular contaminant class. Biomarkers used to assess marine animal responses in the field include the cytochrome P450 system, heat stress protein, histopathology, and bile fluorescent compounds (FAC). Other biomarkers, including DNA/chromosomal damage and phase 2 enzymes, have been shown to respond after laboratory exposure, but more work needs to be done to demonstrate their usefulness in the field. One of the most useful biomarkers of petroleum exposure are the FAC responses in fish, which can be used to distinguish between petrogenic and pyrogenic PAH exposure. Few of the presently used biomarkers are linked to higher order biological effects, e.g. toxicity, reproductive failure.  相似文献   

5.
Styrene is an important industrial chemical that has shown genotoxicity in many toxicology assays. This is believed to be related to the DNA-binding properties of styrene-7,8-oxide (SO), a major metabolite of styrene. In this review, we have summarized knowledge on various aspects of styrene genotoxicity, especially in order to understand the formation and removal of primary DNA lesions, and the usefulness of biomarkers for risk assessment. Biological significances of specific DNA adducts and their role in the cascade of genotoxic events are discussed. Links between markers of external and internal exposure are evaluated, as well as metabolic aspects leading to the formation of DNA adducts and influencing biomarkers of biological effect. Finally, we suggest a design of a population study, which may contribute to our understanding genotoxic events in the exposure either to single xenobiotic or complex mixture.  相似文献   

6.
BackgroundScreening and surveillance approaches for workers exposed to nanomaterials could aid in early detection of health effects, provide data for epidemiological studies and inform action to decrease exposure. The aim of this review is to identify such screening and surveillance approaches, in order to extract available data regarding (i) the studies that have successfully been implemented in present day, (ii) identification of the most common and/or toxic nano-related health hazards for workers and (iii) possible exposure surveillance markers. This review contributes to the current understanding of the risk associated with nanomaterials by determining the knowledge gap and making recommendations based on current findings.MethodsA systematic review was conducted. PubMed and Embase were searched to identify articles reporting on any surveillance-related study that described both exposure to nanomaterials and the health indicators that were measured. Four reviewers worked in pairs to independently assess the eligibility of studies and risk of bias before extraction of data. Studies were categorised according to the type of study and the medical surveillance performed, which included the type of nanomaterial, any exposure details provided, as well as health indicators and biomarkers tested.ResultsInitially 92 studies were identified, from which 84 full texts were assessed for eligibility. Seven studies met all the inclusion criteria, i.e. those performed in Taiwan, Korea, Czech Republic and the US. Of these, six compared health indicators between exposed and unexposed workers and one study described a surveillance program. All studies were at a high risk of bias. Workers were exposed to a mix of nanomaterials in three studies, carbon-based nanomaterials in two studies, nano-silver in one study and nano-titanium oxide in the other study. Two studies did not find a difference in biomarkers between exposed and unexposed workers. In addition, differences in early effects on pulmonary function or neurobehavioral tests were not observed. One study found an increased prevalence of allergic dermatitis and “sneezing” in the exposed group.ConclusionsThis review of recently published data on surveillance studies proves that there is a gap in the current knowledge, where most of the surveillance-related studies reported do not follow a set format that provides the required information on ENM characterisation, the type of exposure and the measured indicators/biomarkers. Hence, there is very low quality evidence that screening and surveillance might detect adverse health effects associated with workplace exposure. This systematic review is relevant because it proves that, although surveillance programs have been initiated and preliminary results are being published, the current studies are actually not answering the important questions or solving the overall problem regarding what the potential health hazards are among workers either handling or potentially exposed to ENMs. The recommendations, thus proposed, are based on an obvious need for (i) exposure registries, where longitudinal follow-up studies should inform surveillance, (ii) known exposure measurements or summary indices for ENMs as a reference (iii) validation of candidate biomarkers and (iv) studies that compare the effects of these surveillance approaches to usual care, e.g. those commonly followed for bulk-size hazardous materials.  相似文献   

7.
《Biomarkers》2013,18(3):183-195
Abstract

Manufacturers have developed prototype cigarettes yielding reduced levels of some tobacco smoke toxicants, when tested using laboratory machine smoking under standardised conditions. For the scientific assessment of modified risk tobacco products, tests that offer objective, reproducible data, which can be obtained in a much shorter time than the requirements of conventional epidemiology are needed. In this review, we consider whether biomarkers of biological effect related to oxidative stress can be used in this role. Based on published data, urinary 8-oxo-7,8-dihydro-2-deoxyguanosine, thymidine glycol, F2-isoprostanes, serum dehydroascorbic acid to ascorbic acid ratio and carotenoid concentrations show promise, while 4-hydroxynonenal requires further qualification.  相似文献   

8.
Squamous cell carcinoma (SCC) is the second most common form of skin cancer in Caucasians. Here we report on the identification of biomarkers of human cutaneous SCC cell lines in vitro and tissue samples in vivo using DermArray and PharmArray DNA microarrays, consisting of ca. 7400 unique human cDNAs. Differentially expressed genes were identified in two facial skin SCC cell lines (SCC 12 and SCC 13) compared to normal keratinocytes, and three cutaneous SCC tissue samples compared to normal skin. Quantitative validations of up- and down-regulated biomarkers were performed by qRT-PCR on 23 biomarker genes for the cell lines and 20 biomarker genes for the tumor tissues. In addition, three oral SCC cell lines were also included in the qRT-PCR validations for comparison, and the biomarker profiles were highly similar between the cutaneous and the oral SCC cell lines for all 23 biomarkers examined. The expression profiles for a variety of non-cutaneous SCC types, such as head-and-neck, oral, and lung, have been previously published. This report is the first to describe biomarkers for cutaneous SCC in two contexts, in vitro and in vivo. Although there was minimal overlap between the two different contexts using DNA microarrays, five genes were found common to both the cell lines and tissues, namely fibronectin 1, annexin A5, glyceraldehyde 3-phosphate dehydrogenase, zinc-finger protein 254, and huntingtin-associated protein interacting protein. Some of our previously published biomarkers of normal keratinocytes were down-regulated in SCC, suggestive of the dedifferentiated status of the transformed cells. While recent reports have identified some of the same genes as SCC biomarkers, for instance in head-and-neck cancer, thereby validating our approach, we have identified some novel biomarkers for cutaneous disease. These biomarker lists may be useful in molecular diagnostics of non-melanoma skin cancer, and a subset of the biomarkers might serve as suitable targets for drug discovery efforts of therapies for SCC.  相似文献   

9.
Phthalic acid esters (PAE) are a class of chemicals varying greatly in terms of uses, properties, and toxicity. C1 to C4 PAE are used in non-vinyl commercial products and pharmaceuticals. C8 to C10 PAE are additives imparting flexibility to vinyl resins. The purpose of the present study is to assess chronic effects of PAE on aquatic organisms. Studies show that populations of fish and invertebrates may be adversely affected by exposure to C1 to C4 PAE, but are not adversely affected by exposure to C8 or higher PAE. Secondary endpoints, including molecular, biochemical, and/or histological responses to chemical exposure, do not appear to predict effects related to primary endpoints of survival, growth and development, or reproductive fitness. A previously published risk assessment for C1 to C4 PAE demonstrated low risks in North American and Western European surface waters. Risk assessments conducted by authorities in Europe with di-2-ethylhexyl-, di-isononyl-, and di-isodecyl phthalates have concluded no risks to aquatic organisms due to aqueous solubility constraints, low expected surface water concentrations, and metabolic biotransformation capabilities of aquatic organisms. The present review of chronic aquatic toxicity data, which includes data from studies performed subsequent to the risk assessments, confirms these earlier conclusions.  相似文献   

10.
高锐  张诚 《现代生物医学进展》2012,12(14):2781-2784
肾癌发病率约占全身恶性肿瘤的3%。肾癌组织学行为多变,预后有不确定性。外科手术可以治疗局限性肾癌,但有将近20%的局限性肾癌患者原发肿瘤切除后出现转移,而且肾癌对化疗及放疗均不敏感。基于此临床上开展了许多辅助试验的研究,并建立了许多模型来研究肾癌术后的预后,而模型的精准度一般都需要依据肾癌的生物标记物监测。有很多分子生物标记物已经证实和肾癌预后相关,如VHL、P53、Ki-67等,本文综述了肾癌预后的分子生物标记物的最新进展。  相似文献   

11.
Epigenetic mechanisms have gained relevance in human health and environmental studies, due to their pivotal role in disease, gene × environment interactions and adaptation to environmental change and/or contamination. Epigenetic mechanisms are highly responsive to external stimuli and a wide range of chemicals has been shown to determine specific epigenetic patterns in several organisms. Furthermore, the mitotic/meiotic inheritance of such epigenetic marks as well as the resulting changes in gene expression and cell/organismal phenotypes has now been demonstrated. Therefore, epigenetic signatures are interesting candidates for linking environmental exposures to disease as well as informing on past exposures to stressors. Accordingly, epigenetic biomarkers could be useful tools in both prospective and retrospective risk assessment but epigenetic endpoints are currently not yet incorporated into risk assessments. Achieving a better understanding on this apparent impasse, as well as identifying routes to promote the application of epigenetic biomarkers within environmental risk assessment frameworks are the objectives of this review. We first compile evidence from human health studies supporting the use of epigenetic exposure‐associated changes as reliable biomarkers of exposure. Then, specifically focusing on environmental science, we examine the potential and challenges of developing epigenetic biomarkers for environmental fields, and discuss useful organisms and appropriate sequencing techniques to foster their development in this context. Finally, we discuss the practical incorporation of epigenetic biomarkers in the environmental risk assessment of chemicals, highlighting critical data gaps and making key recommendations for future research within a regulatory context.  相似文献   

12.
BACKGROUND: The objective of this study was a review of published studies utilizing measurement of fatty acid ethyl esters (FAEE) in meconium as biomarkers for prenatal alcohol exposure. METHODS: We completed a literature search of PubMed using the terms meconium, fatty acid ethyl esters, biomarkers, and prenatal alcohol exposure. We included only peer reviewed studies utilizing analysis of meconium for the presence of FAEE in humans through the year 2007. RESULTS: We found 10 articles reporting on original research examining the relationship of FAEE from meconium and prenatal alcohol exposure (PAE). The 10 articles used six different PAE assessment strategies and four different analytical techniques for determining FAEE endpoints. The articles included 2,221 subjects (range 4 to 725) with 455 (20.5%) subjects identified as exposed using the methods stated in the articles. FAEE levels above the studies' respective cutoffs were reported for 502 (22.6%) subjects. CONCLUSIONS: The accurate identification of alcohol‐exposed pregnancies represents a significant challenge in the development of FAEE detection cutoffs to maximize the sensitivity and specificity of the test. We present several options for the improvement of exposure assessment in future studies of FAEE as biomarkers for PAE. Birth Defects Research (Part A), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Butylated hydroxytoluene (BHT) is an effective, widely used, low cost antioxidant. A host of studies examining the potential of BHT to cause point mutations have been published. They include in vitro studies on various bacterial species and strains and on various types of mammalian cell lines as well as in vivo studies on Drosophila melanogaster, silk worms and also the mouse specific locus test (involving long-term exposure). Together these studies convincingly show the absence of a potential for BHT to cause point mutations. A great number of studies on many cell types and species have also been carried out to examine the potential of BHT to cause chromosome aberrations. In vitro studies have been published using plant cells and the WI-38, CHL, CHO, and V79 mammalian cell lines. In vivo studies have been carried out on somatic and/or germ cells of Drosophila melanogaster, rats and mice. Nearly all studies, especially those using validated test systems, indicate that BHT lacks clastogenic potential. In vitro studies on bacterial, yeast and various mammalian cell lines including DON, CHO, CHL cells and primary hepatocytes demonstrate the absence of interactions with or damage to DNA. Taking all the existing data into account, the weight of evidence suggests that BHT does not represent a relevant mutagenic/genotoxic risk to man.  相似文献   

14.
Novak S  Drobne D  Menard A 《ZooKeys》2012,(176):261-273
Nanoparticles of titanium dioxide are one of most widely used nanomaterials in different products in everyday use and in industry, but very little is known about their effects on non- target cells and tissues. Terrestrial isopods were exposed to food dosed with nano-TiO(2) to give final nominal concentration 1000 and 2000 μg TiO(2)/g dry weight of food. The effects of ingested nano-TiO(2) on the model invertebrate Porcellio scaber (Isopoda, Crustacea) after short-term (3 and 7 days) and prolonged (14 and 28 days) dietary exposure was assessed by conventional toxicity measures such as feeding rate, weight change and mortality. Cell membrane destabilization was also investigated. No severe toxicity effects were observed after 3, 7, 14 or 28 days of dietary exposure to nano-TiO(2), but some animals, particularly those exposed to lower concentrations of nanoparticles, had severely destabilized digestive cell membranes. It was concluded that strong destabilization of the cell membrane was sporadic, and neither concentration- nor time-related. Further research is needed to confirm this sporadic toxic effect of nanoparticles.  相似文献   

15.
During a scientific workshop the use of biological monitoring in characterization of retrospective exposure assessment was discussed. The workshop addressed currently available methodology and also novel approaches such as in different fields of ‘omics’. For use in epidemiology requiring retrospective exposure assessment, biomarker levels should not vary too much over time. If variability in exposure over time is large and differences in exposure between individuals are relatively small, this may lead to underestimation of the exposure–response relationship. This means that, for a sound assessment of health risk, biomarkers that reflect cumulative exposure over a long period of time are preferred over biomarkers with short half-lives. Most of the existing biomarkers such as metabolites in body fluids usually have rather short half-lives, typically less than 1–2 days. Some adducts to DNA show somewhat longer half-lives. The current limit to persistence of biomarkers reflecting cumulative exposure over time is from adducts to haemoglobin with a half-life of 4 months. Some specific organic substances may be more persistent due to storage in adipose tissue or metals in kidneys, nails and hair. The metabonomics, proteomics and present gene expression profiling approaches do not provide a perspective to the availability of more persistent biomarkers and most approaches discussed to date show that it is difficult to interpret study outcomes in terms of exposure to a specific xenobiotic factor. Research efforts should focus on improvement and validation of currently available approaches in the field of addition products to DNA and proteins. Promising new developments may be phosphotriester DNA adducts and adducts to more long-lived proteins such as histones.  相似文献   

16.
For human risk assessment, experimental data often have to be extrapolated for exposure duration, which is generally done by means of default values. The purpose of the present study was twofold. First, to derive a statistical distribution for differences in exposure duration that can be used in a probabilistic concept for combining assessment factors in risk characterization. Second, to obtain insight in the magnitude of the change in No-Observed-Adverse-Effect-Level (NOAEL) with exposure duration, which will lead to more science-based assessment factors for exposure duration. A large historical database, including 198 substances, was consulted. Ratios were calculated for pairs of NOAELs for systemic toxicity from oral toxicity studies with the same species (rats or mice, various strains) and different exposure duration categories. The Geometric Mean (GM), Geometric Standard Deviation (GSD), and the 90th and 95th percentile values were determined. The traditionally applied default factors for subacute to semichronic (10), for semichronic to chronic (10), and for subacute to chronic exposure (100) corresponded with the 93, 87, and 99-percentiles of the respective distributions. Options are presented for a set of default values and probabilistic distributions for assessment factors for exposure duration based on data from the consulted historical database.  相似文献   

17.
A metabolic biomarker‐based in vitro assay utilizing human embryonic stem (hES) cells was developed to identify the concentration of test compounds that perturbs cellular metabolism in a manner indicative of teratogenicity. This assay is designed to aid the early discovery‐phase detection of potential human developmental toxicants. In this study, metabolomic data from hES cell culture media were used to assess potential biomarkers for development of a rapid in vitro teratogenicity assay. hES cells were treated with pharmaceuticals of known human teratogenicity at a concentration equivalent to their published human peak therapeutic plasma concentration. Two metabolite biomarkers (ornithine and cystine) were identified as indicators of developmental toxicity. A targeted exposure‐based biomarker assay using these metabolites, along with a cytotoxicity endpoint, was then developed using a 9‐point dose–response curve. The predictivity of the new assay was evaluated using a separate set of test compounds. To illustrate how the assay could be applied to compounds of unknown potential for developmental toxicity, an additional 10 compounds were evaluated that do not have data on human exposure during pregnancy, but have shown positive results in animal developmental toxicity studies. The new assay identified the potential developmental toxicants in the test set with 77% accuracy (57% sensitivity, 100% specificity). The assay had a high concordance (≥75%) with existing in vivo models, demonstrating that the new assay can predict the developmental toxicity potential of new compounds as part of discovery phase testing and provide a signal as to the likely outcome of required in vivo tests.  相似文献   

18.
Modern epidemiology suggests a potential interactive association between diet, lifestyle, genetics and the risk of many chronic diseases. As such, many epidemiologic studies attempt to consider assessment of dietary intake alongside genetic measures and other variables of interest. However, given the multi-factorial complexities of dietary exposures, all dietary intake assessment methods are associated with measurement errors which affect dietary estimates and may obscure disease risk associations. For this reason, dietary biomarkers measured in biological specimens are being increasingly used as additional or substitute estimates of dietary intake and nutrient status. Genetic variation may influence dietary intake and nutrient metabolism and may affect the utility of a dietary biomarker to properly reflect dietary exposures. Although there are many functional dietary biomarkers that, if utilized appropriately, can be very informative, a better understanding of the interactions between diet and genes as potentially determining factors in the validity, application and interpretation of dietary biomarkers is necessary. It is the aim of this review to highlight how some important biomarkers are being applied in nutrition epidemiology and to address some associated questions and limitations. This review also emphasizes the need to identify new dietary biomarkers and highlights the emerging field of nutritional metabonomics as an analytical method to assess metabolic profiles as measures of dietary exposures and indicators of dietary patterns, dietary changes or effectiveness of dietary interventions. The review will also touch upon new statistical methodologies for the combination of dietary questionnaire and biomarker data for disease risk assessment. It is clear that dietary biomarkers require much further research in order to be better applied and interpreted. Future priorities should be to integrate high quality dietary intake information, measurements of dietary biomarkers, metabolic profiles of specific dietary patterns, genetics and novel statistical methodology in order to provide important new insights into gene-diet-lifestyle-disease risk associations.  相似文献   

19.
Nanotechnology is a novel emerging technology that allows the manipulation of materials at the scale comparable to the size of a single molecule (i.e., < 100 nm). There have been many new developments in this technology, resulting in complex exposure and health risk implications. Nanotechnology offers major benefits to humankind; however, there is growing concern regarding the potential adverse interactions of engineered nanoparticles at cellular or sub-cellular levels. The nanotech community is therefore experiencing growing calls for legislation to minimize or prevent exposure to nanoparticles. This article focuses on recent developments in nanotechnology including current manufacturing techniques, uses of nanoscale particles, and implications for particle toxicity and human exposure pathways. Current risk assessment methods are reviewed in the context of nanoparticle exposure routes and regulation for human and environmental health protection. This study provides a better understanding of the factors governing risks from nanoparticles and current strategies for protecting environmental and public health.  相似文献   

20.
The performance of a battery of three of the most commonly used in vitro genotoxicity tests--Ames+mouse lymphoma assay (MLA)+in vitro micronucleus (MN) or chromosomal aberrations (CA) test--has been evaluated for its ability to discriminate rodent carcinogens and non-carcinogens, from a large database of over 700 chemicals compiled from the CPDB ("Gold"), NTP, IARC and other publications. We re-evaluated many (113 MLA and 30 CA) previously published genotoxicity results in order to categorise the performance of these assays using the response categories we established. The sensitivity of the three-test battery was high. Of the 553 carcinogens for which there were valid genotoxicity data, 93% of the rodent carcinogens evaluated in at least one assay gave positive results in at least one of the three tests. Combinations of two and three test systems had greater sensitivity than individual tests resulting in sensitivities of around 90% or more, depending on test combination. Only 19 carcinogens (out of 206 tested in all three tests, considering CA and MN as alternatives) gave consistently negative results in a full three-test battery. Most were either carcinogenic via a non-genotoxic mechanism (liver enzyme inducers, peroxisome proliferators, hormonal carcinogens) considered not necessarily relevant for humans, or were extremely weak (presumed) genotoxic carcinogens (e.g. N-nitrosodiphenylamine). Two carcinogens (5-chloro-o-toluidine, 1,1,2,2-tetrachloroethane) may have a genotoxic element to their carcinogenicity and may have been expected to produce positive results somewhere in the battery. We identified 183 chemicals that were non-carcinogenic after testing in both male and female rats and mice. There were genotoxicity data on 177 of these. The specificity of the Ames test was reasonable (73.9%), but all mammalian cell tests had very low specificity (i.e. below 45%), and this declined to extremely low levels in combinations of two and three test systems. When all three tests were performed, 75-95% of non-carcinogens gave positive (i.e. false positive) results in at least one test in the battery. The extremely low specificity highlights the importance of understanding the mechanism by which genotoxicity may be induced (whether it is relevant for the whole animal or human) and using weight of evidence approaches to assess the carcinogenic risk from a positive genotoxicity signal. It also highlights deficiencies in the current prediction from and understanding of such in vitro results for the in vivo situation. It may even signal the need for either a reassessment of the conditions and criteria for positive results (cytotoxicity, solubility, etc.) or the development and use of a completely new set of in vitro tests (e.g. mutation in transgenic cell lines, systems with inherent metabolic activity avoiding the use of S9, measurement of genetic changes in more cancer-relevant genes or hotspots of genes, etc.). It was very difficult to assess the performance of the in vitro MN test, particularly in combination with other assays, because the published database for this assay is relatively small at this time. The specificity values for the in vitro MN assay may improve if data from a larger proportion of the known non-carcinogens becomes available, and a larger published database of results with the MN assay is urgently needed if this test is to be appreciated for regulatory use. However, specificity levels of <50% will still be unacceptable. Despite these issues, by adopting a relative predictivity (RP) measure (ratio of real:false results), it was possible to establish that positive results in all three tests indicate the chemical is greater than three times more likely to be a rodent carcinogen than a non-carcinogen. Likewise, negative results in all three tests indicate the chemical is greater than two times more likely to be a rodent non-carcinogen than a carcinogen. This RP measure is considered a useful tool for industry to assess the likelihood of a chemical possessing carcinogenic potential from batteries of positive or negative results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号