首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
2.
3.

Background

PI3K/AKT pathway alterations are associated with incomplete response to chemoradiation in human cervical cancer. This study was performed to test for mutations in the PI3K pathway and to evaluate the effects of AKT inhibitors on glucose uptake and cell viability.

Experimental Design

Mutational analysis of DNA from 140 pretreatment tumor biopsies and 8 human cervical cancer cell lines was performed. C33A cells (PIK3CAR88Q and PTENR233*) were treated with increasing concentrations of two allosteric AKT inhibitors (SC-66 and MK-2206) with or without the glucose analogue 2-deoxyglucose (2-DG). Cell viability and activation status of the AKT/mTOR pathway were determined in response to the treatment. Glucose uptake was evaluated by incubation with 18F-fluorodeoxyglucose (FDG). Cell migration was assessed by scratch assay.

Results

Activating PIK3CA (E545K, E542K) and inactivating PTEN (R233*) mutations were identified in human cervical cancer. SC-66 effectively inhibited AKT, mTOR and mTOR substrates in C33A cells. SC-66 inhibited glucose uptake via reduced delivery of Glut1 and Glut4 to the cell membrane. SC-66 (1 µg/ml-56%) and MK-2206 (30 µM-49%) treatment decreased cell viability through a non-apoptotic mechanism. Decreases in cell viability were enhanced when AKT inhibitors were combined with 2-DG. The scratch assay showed a substantial reduction in cell migration upon SC-66 treatment.

Conclusions

The mutational spectrum of the PI3K/AKT pathway in cervical cancer is complex. AKT inhibitors effectively block mTORC1/2, decrease glucose uptake, glycolysis, and decrease cell viability in vitro. These results suggest that AKT inhibitors may improve response to chemoradiation in cervical cancer.  相似文献   

4.
5.

Background

Casticin is one of the main active components obtained from Fructus Viticis and has been reported to exert anti-carcinogenic activity on a variety of cancer cells but the precise mechanism underlying this activity remains unclear.

Materials and Methods

Apoptotic activities of casticin (1.0 µmol/l) and TRAIL (25, 50 ng/ml) alone or in combination in the gastric cancer cell lines BGC-823, SGC-7901 and MGC-803 were detected by the use of a cell apoptosis ELISA detection kit, flow cytometry (FCM) with propidium iodide (PI) staining and activities of caspase-3, -8 and -9 by ELISA and cleavage of polyADP-ribose polymerase (PARP) protein using western blot analysis. Death receptors (DR) expression levels were evaluated using FCM analysis and western blotting. 2′, 7′-dichlorofluorescein diacetate (DCFH-DA) was used as a probe to measure the increase in reactive oxygen species (ROS) levels in cells. Multiple interventions, such as siRNA transfection and pharmacological inhibitors were used to explore the mechanisms of these actions.

Results

Subtoxic concentrations of casticin significantly potentiated TRAIL-induced cytotoxicity and apoptosis in BGC-823, SGC-7901 and MGC-803 cells. Casticin dramatically upregulated DR5 receptor expression but had no effects on DR4 or decoy receptors. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by the co-application of TRAIL and casticin. Gene silencing of the CCAAT/enhancer binding protein homologous protein (CHOP) and pretreatment with salubrinal, an endoplasmic reticulum (ER) stress inhibitor, attenuated casticin-induced DR5 receptor expression, and apoptosis and ROS production. Casticin downregulated the expression levels of the cell survival proteins cFLIP, Bcl-2, XIAP, and survivin. In addition, casticin also induced the expressions of DR5 protein in other gastric cancer cells (SGC-7901 and MGC-803).

Conclusion/Significance

Casticin enhances TRAIL-induced apoptosis through the downregulation of cell survival proteins and the upregulation of DR5 receptors through actions on the ROS-ER stress-CHOP pathway.  相似文献   

6.
Zhu DM  Shi J  Liu S  Liu Y  Zheng D 《PloS one》2011,6(4):e18291

Background

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) could induce apoptosis of HIV-1-infected monocyte-derived macrophage (MDM), but the molecular mechanisms are not well understood.

Methodology/Principal Findings

By using an HIV-1 Env-pseudotyped virus (HIV-1 PV)-infected MDM cell model we demonstrate that HIV-1 PV infection down-regulates the expression of TRAIL decoy receptor 1 (DcR1) and 2 (DcR2), and cellular FLICE-inhibitory protein (c-FLIP), but dose not affect the expression of death receptor 4 and 5 (DR4, DR5), and Bcl-2 family members in MDM cells. Furthermore, recombinant soluble TRAIL and an agonistic anti-DR5 antibody, AD5-10, treatment stimulates reactive oxygen species (ROS) generation and JNK phosphorylation.

Conclusions/Significance

HIV infection facilitates TRIAL-induced cell death in MDM by down-regulating the expression of TRAIL decoy receptors and intracellular c-FLIP. Meanwhile, the agonistic anti-DR5 antibody, AD5-10, induces apoptosis synergistically with TRAIL in HIV-1-infected cells. ROS generation and JNK phosphorylation are involved in this process. These findings potentiate clinical usage of the combination of TRAIL and AD5-10 in eradication of HIV-infected macrophage and AIDS.  相似文献   

7.

Background

Diffuse large B-cell lymphoma (DLBCL) is a common and often fatal malignancy. Immunochemotherapy, a combination of rituximab to standard chemotherapy, has resulted in improved survival. However a substantial proportion of patients still fail to reach sustained remission. We have previously demonstrated that autocrine brain-derived neurotrophic factor (BDNF) production plays a function in human B cell survival, at least partly via sortilin expression. As neurotrophin receptor (Trks) signaling involved activation of survival pathways that are inhibited by rituximab, we speculated that neurotrophins may provide additional support for tumour cell survival and therapeutic resistance in DLBCL.

Methodology/Principal Findings

In the present study, we used two DLBCL cell lines, SUDHL4 and SUDHL6, known to be respectively less and more sensitive to rituximab. We found by RT-PCR, western blotting, cytometry and confocal microscopy that both cell lines expressed, in normal culture conditions, BDNF and to a lesser extent NGF, as well as truncated TrkB and p75NTR/sortilin death neurotrophin receptors. Furthermore, BDNF secretion was detected in cell supernatants. NGF and BDNF production and Trk receptor expression, including TrkA, are regulated by apoptotic conditions (serum deprivation or rituximab exposure). Indeed, we show for the first time that rituximab exposure of DLBCL cell lines induces NGF secretion and that differences in rituximab sensitivity are associated with differential expression patterns of neurotrophins and their receptors (TrkA). Finally, these cells are sensitive to the Trk-inhibitor, K252a, as shown by the induction of apoptosis. Furthermore, K252a exhibits additive cytotoxic effects with rituximab.

Conclusions/Significance

Collectively, these data strongly suggest that a neurotrophin axis, such NGF/TrkA pathway, may contribute to malignant cell survival and rituximab resistance in DLBCL.  相似文献   

8.
Wu Z  Min L  Chen D  Hao D  Duan Y  Qiu G  Wang Y 《PloS one》2011,6(2):e14648

Background

BMI-1 is a member of the polycomb group of genes (PcGs), and it has been implicated in the development and progression of several malignancies, but its role in osteosarcoma remains to be elucidated.

Methodology/Principal Findings

In the present study, we found that BMI-1 was overexpressed in different types of osteosarcomas. Downregulation of BMI-1 by lentivirus mediated RNA interference (RNAi) significantly impaired cell viability and colony formation in vitro and tumorigenesis in vivo of osteosarcoma cells. BMI-1 knockdown sensitized cells to cisplatin-induced apoptosis through inhibition of PI3K/AKT pathway. Moreover, BMI-1-depletion-induced phenotype could be rescued by forced expression of BMI-1 wobble mutant which is resistant to inhibition by the small interfering RNA (siRNA).

Conclusions/Significance

These findings suggest a crucial role for BMI-1 in osteosarcoma pathogenesis.  相似文献   

9.

Background

The success of pancreatic islet transplantation still faces many challenges, mainly related to cell damage during islet isolation and early post-transplant. The increased generation of reactive oxygen species (ROS) during islet isolation and the consumption of antioxidant defenses appear to be an important pathway related to islet damage.

Methodology/Principal Findings

In the present study we evaluated whether supplementation of glutathione-ethyl-ester (GEE) during islet isolation could improve islet viability and transplant outcomes in a murine marginal islet mass model. We also cultured human islets for 24 hours in standard CMRL media with or without GEE supplementation. Supplementation of GEE decreased the content of ROS in isolated islets, leading to a decrease in apoptosis and maintenance of islet viability. A higher percentage of mice transplanted with a marginal mass of GEE treated islets became euglycemic after transplant. The supplementation of 20 mM GEE in cultured human islets significantly reduced the apoptosis rate in comparison to untreated islets.

Conclusions/Significance

GEE supplementation was able to decrease the apoptosis rate and intracellular content of ROS in isolated islets and might be considered a potential intervention to improve islet viability during the isolation process and maintenance in culture before islet transplantation.  相似文献   

10.
Yuan Z  Wang F  Zhao Z  Zhao X  Qiu J  Nie C  Wei Y 《PloS one》2011,6(5):e20586

Background

Chemo-resistance to cisplatin-centered cancer therapy is a major obstacle to the effective treatment of human ovarian cancer. Previous reports indicated that arsenic trioxide (ATO) induces cell apoptosis in both drug-sensitive and -resistant ovarian cancer cells.

Principal Findings

In this study, we determined the molecular mechanism of ATO-induced apoptosis in ovarian cancer cells. Our data demonstrated that ATO induced cell apoptosis by decreasing levels of phosphorylated AKT (p-AKT) and activating caspase-3 and caspase-9. Importantly, BIM played a critical role in ATO-induced apoptosis. The inhibition of BIM expression prevented AKT dephosphorylation and inhibited caspase-3 activation during cell apoptosis. However, surprisingly, gene silencing of AKT or FOXO3A had little effect on BIM expression and phosphorylation. Moreover, the activation of caspase-3 by ATO treatment improved AKT dephosphorylation, not only by cleaving the regulatory A subunit of protein phosphatase 2A (PP2A), but also by increasing its activation. Furthermore, our data indicated that the c-Jun N-terminal kinases (JNK) pathway is involved in the regulation of BIM expression.

Conclusions

We demonstrated the roles of BIM in ATO-induced apoptosis and the molecular mechanisms of BIM expression regulated by ATO during ovarian cancer cell apoptosis. Our findings suggest that BIM plays an important role in regulating p-AKT by activating caspase-3 and that BIM mediates the level of AKT phosphorylation to determine the threshold for overcoming cisplatin resistance in ovarian cancer cells.  相似文献   

11.

Background

We have investigated the potential anticancer effects of karanjin, a principal furanoflavonol constituent of the Chinese medicine Fordia cauliflora, using cytotoxic assay, cell cycle arrest, and induction of apoptosis in three human cancer cell lines (A549, HepG2 and HL-60 cells).

Results

MTT cytotoxic assay showed that karanjin could inhibit the proliferation and viability of all three cancer cells. The induction of cell cycle arrest was observed via a PI (propidium iodide)/RNase Staining Buffer detection kit and analyzed by flow cytometry: karanjin could dose-dependently induce cell cycle arrest at G2/M phase in the three cell lines. Cell apoptosis was assessed by Annexin V-FITC/PI staining: all three cancer cells treated with karanjin exhibited significantly increased apoptotic rates, especially in the percentage of late apoptosis cells.

Conclusion

Karanjin can induce cancer cell death through cell cycle arrest and enhance apoptosis. This compound may be effective clinically for cancer pharmacotherapy.  相似文献   

12.

Purpose

To investigate the protective effects of a novel cyclopeptide C*HSDGIC* (CHC) from the cyclization of Pituitary adenylate cyclase-activating polypeptide (PACAP) (1–5) in cellular and rodent models of retinal ganglion cell apoptosis.

Methodology/Principal Findings

Double-labeling immunohistochemistry was used to detect the expression of Thy-1 and PACAP receptor type 1 in a retinal ganglion cell line RGC-5. The apoptosis of RGC-5 cells was induced by 0.02 J/cm2 Ultraviolet B irradiation. MTT assay, flow cytometry, fluorescence microscopy were used to investigate the viability, the level of reactive oxygen species (ROS) and apoptosis of RGC-5 cells respectively. CHC attenuated apoptotic cell death induced by Ultraviolet B irradiation and inhibited the excessive generation of ROS. Moreover, CHC treatment resulted in decreased expression of Bax and concomitant increase of Bcl-2, as was revealed by western-blot analysis. The in vivo apoptosis of retinal ganglion cells was induced by injecting 50 mM N-methyl-D-aspartate (NMDA) (100 nmol in a 2 µL saline solution) intravitreally, and different dosages of CHC were administered. At day 7, rats in CHC+ NMDA-treated groups showed obvious aversion to light when compared to NMDA rats. Electroretinogram recordings revealed a marked decrease in the amplitudes of a-wave, b-wave, and photopic negative response due to NMDA damage. In retina receiving intravitreal NMDA and CHC co-treatment, these values were significantly increased. CHC treatment also resulted in less NMDA-induced cell loss and a decrease in the proportion of dUTP end-labeling-positive cells in ganglion cell line.

Conclusions

C*HSDGIC*, a novel cyclopeptide from PACAP (1–5) attenuates apoptosis in RGC-5 cells and inhibits NMDA-induced retinal neuronal death. The beneficial effects may occur via the mitochondria pathway. PACAP derivatives like CHC may serve as a promising candidate for neuroprotection in glaucoma.  相似文献   

13.

Background

The effective therapies for oral cancer patients of stage III and IV are generally surgical excision and radiation combined with adjuvant chemotherapy using 5-Fu and Cisplatin. However, the five-year survival rate is still less than 30% in Taiwan. Therefore, evaluation of effective drugs for oral cancer treatment is an important issue. Many studies indicated that aurora kinases (A, B and C) were potential targets for cancer therapies. Reversine was proved to be a novel aurora kinases inhibitor with lower toxicity recently. In this study, the potentiality for reversine as an anticancer agent in oral squamous cell carcinoma (OSCC) was evaluated.

Methods

Effects of reversine on cell growth, cell cycle progress, apoptosis, and autophagy were evaluated mainly by cell counting, flow cytometry, immunoblot, and immunofluorescence.

Results

The results demonstrated that reversine significantly suppressed the proliferation of two OSCC cell lines (OC2 and OCSL) and markedly rendered cell cycle arrest at G2/M stage. Reversine also induced cell death via both caspase-dependent and -independent apoptosis. In addition, reversine could inhibit Akt/mTORC1 signaling pathway, accounting for its ability to induce autophagy.

Conclusions

Taken together, reversine suppresses growth of OSCC via multiple mechanisms, which may be a unique advantage for developing novel therapeutic regimens for treatment of oral cancer in the future.  相似文献   

14.
ZM Li  JJ Huang  Y Xia  J Sun  Y Huang  Y Wang  YJ Zhu  YJ Li  W Zhao  WX Wei  TY Lin  HQ Huang  WQ Jiang 《PloS one》2012,7(7):e41658

Background

Recent research has shown a correlation between immune microenvironment and lymphoma biology. This study aims to investigate the prognostic significance of the immunologically relevant lymphocyte-to-monocyte ratio (LMR), in diffuse large B-cell lymphoma (DLBCL) in the rituximab era.

Methodology/Principal Findings

We analyzed retrospective data from 438 newly diagnosed DLBCL patients treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy. We randomly selected 200 patients (training set) to generate a cutoff value for LMR by receiver operating characteristic (ROC) curve analysis. LMR was then analyzed in a testing set (n = 238) and in all patients (n = 438) for validation. The LMR cutoff value for survival analysis determined by ROC curve in the training set was 2.6. Patients with low LMR tended to have more adverse clinical characteristics. Low LMR at diagnosis was associated with worse survival in DLBCL, and could also identify high-risk patients in the low-risk IPI category. Multivariate analysis identified LMR as an independent prognostic factor of survival in the testing set and in all patients.

Conclusions/Significance

Baseline LMR, a surrogate biomarker of the immune microenvironment, is an effective prognostic factor in DLBCL patients treated with R-CHOP therapy. Future prospective studies are required to confirm our findings.  相似文献   

15.

Purpose

This study sought to characterize the imaging features of primary splenic lymphoma (PSL).

Materials and Methods

Pathological and imaging data from 17 patients with primary splenic lymphoma initially diagnosed at splenectomy were retrospectively analyzed. Pretreatment computed tomography (CT) imaging was available for 16 patients, and magnetic resonance imaging (MRI) data were available for 4 patients. Splenic lymphoma imaging data were categorized based on the gross pathological presentation in the following manner: type 1, homogeneous enlargement; type 2, miliary nodules; type 3, multifocal masses of varying size; and type 4, solitary large mass.

Results

Of the 17 patients with PSL, 16 cases were non-Hodgkin lymphoma, and of these, 9 cases were diffuse large B cell lymphomas (DLBCL) and 4 cases were splenic marginal zone B-cell lymphoma (SMZL). Imaging showed the following types of PSL presentation: 1 case of type 1, 0 cases of type 2, 4 cases of type 3, and 12 cases of type 4. There was evidence of necrosis in 12 cases (70.6%), and there was evidence of mild enhancement in enhanced CT in 14 cases and in enhanced MRI in 3 cases. Prior to surgery, PSL was considered possible in 8 patients.

Conclusion

The most frequent histological subtype was DLBCL, followed by SMZL. In both CT and MRI, PSL generally presents as a solitary mass or masses rather than as splenomegaly. In addition, necrosis and mild enhancement are commonly observed, and splenectomy may be required to confirm the diagnosis.  相似文献   

16.

Background/Aims

Septic cardiomyopathy is a severe condition that remains a challenge for clinical management. This study investigated whether the natural polyphenolic compound resveratrol could be used as a prophylactic treatment to alleviate sepsis-related myocardial injury; the underlying molecular mechanisms were deciphered by both in vitro and in vivo experiments.

Methods

A mouse model of endotoxin-induced cardiomyopathy was developed by intraperitoneal injection of LPS, and resveratrol was administered prophylatically to the animals. Serum LDH and CK activities were measured to detect myocardial injury, and echocardiography was performed to monitor cardiac structure and function. Various cytokines/chemokines and the Nrf2 antioxidant defense system were examined in the heart tissue. The effects of resveratrol on LPS-induced Nrf2 activation, ROS generation, and apoptotic cell death were further investigated in cultured primary human cardiomyocytes. An Nrf2 specific siRNA was used to define its role in resveratrol-mediated cardiomyocyte protective effect.

Results

Resveratrol pretreatment significantly attenuated LPS-induced myocardial injury in mice, which was associated with suppressed proinflammatory cytokine production and enhanced Nrf2 activation in the heart. In cultured primary human cardiomyocytes, resveratrol activated Nrf2, inhibited LPS-induced ROS generation, and effectively protected the cells from LPS-induced apoptotic cell death. Knockdown of Nrf2 abrogated resveratrol-mediated protection of the cells from LPS-induced cell death.

Conclusion

Resveratrol effectively alleviates endotoxin-induced cardiac toxicity through mechanisms that involve the Nrf2 antioxidant defense pathway. Our data suggest that resveratrol might be developed as a useful prophylactic management for septic cardiomyopathy.  相似文献   

17.

Background

Hypoxia and hypoxia-reoxygenation (H-R) are pathogenic factors in many liver diseases that lead to hepatocyte death as a result of reactive oxygen species (ROS) accumulation. The tumor necrosis factor super-family member CD154 can also induce hepatocyte apoptosis via activation of its receptor CD40 and induction of autocrine/paracrine Fas Ligand/CD178 but the relationship between CD40 activation, ROS generation and apoptosis is poorly understood. We hypothesised that CD40 activation and ROS accumulation act synergistically to drive human hepatocyte apoptosis.

Methods

Human hepatocytes were isolated from liver tissue and exposed to an in vitro model of hypoxia and H-R in the presence or absence of CD154 and/or various inhibitors. Hepatocyte ROS production, apoptosis and necrosis were determined by labelling cells with 2′,7′-dichlorofluorescin, Annexin-V and 7-AAD respectively in a three-colour reporter flow cytometry assay.

Results

Exposure of human hepatocytes to recombinant CD154 or platelet-derived soluble CD154 augments ROS accumulation during H-R resulting in NADPH oxidase-dependent apoptosis and necrosis. The inhibition of c-Jun N-terminal Kinase and p38 attenuated CD154-mediated apoptosis but not necrosis.

Conclusions

CD154-mediated apoptosis of hepatocytes involves ROS generation that is amplified during hypoxia-reoxygenation. This finding provides a molecular mechanism to explain the role of platelets in hepatocyte death during ischemia-reperfusion injury.  相似文献   

18.

Purpose

FOXP3+ regulatory T cells (Treg) play an essential role in modulating host responses to tumors and infections. The role of these cells in the pathogenesis of MALT lymphomas remains unknown. The aims of the study were to quantify the number of infiltrating FOXP3+ and CD3+ cells in patients with gastric MALT lymphoma at diagnosis and to study kinetics of these cells and CD20+ tumor cells after treatment and during long-term follow-up.

Methods

FOXP3+, CD3+ and CD20+ cells were analyzed by immunohistochemistry and the number of cells was quantified using a micrometric ocular. Samples of 35 patients with gastric MALT lymphoma at diagnosis and after treatment were included. Diagnostic samples were compared to 19 cases of chronic gastritis and diffuse large B-cell lymphoma (DLBCL) of the stomach.

Results

The median number of FOXP3+ infiltrating cells was higher (27 cells/cm2) in gastric MALT patients than in DLBCL (10 cells; p = 0.162) but similar to chronic gastritis (20 cells; p = 0.605). No characteristic or specific distribution pattern of infiltrating FOXP3+ cells was found. Gastric MALT lymphoma patients responding to bacterial eradication therapy had higher number of FOXP3+ cells at study entry. Kinetics of both infiltrating FOXP3+ cells and tumor CD20+ cells were strongly dependent on the treatment administered.

Discussion

Gastric MALT lymphomas have a number of Treg cells more similar to chronic gastritis than to DLBCL. Patients with higher number of tumor infiltrating FOXP3+ cells at study entry seem to have better response to antibiotics. Kinetics of Treg and tumor cells are influenced by type of treatment.  相似文献   

19.

Background

Hepatic ischemia–reperfusion injury (HIRI) remains a pivotal clinical problem after hemorrhagic shock, transplantation, and some types of toxic hepatic injury. Apoptosis and autophagy play important roles in cell death during HIRI. It is also known that N-acetylcysteine (NAC) has significant pharmacologic effects on HIRI including elimination of reactive oxygen species (ROS) and attenuation of hepatic apoptosis. However, the effects of NAC on HIRI-induced autophagy have not been reported. In this study, we evaluated the effects of NAC on autophagy and apoptosis in HIRI, and explored the possible mechanism involved.

Methods

A mouse model of segmental (70%) hepatic warm ischemia was adopted to determine hepatic injury. NAC (150 mg/kg), a hepatoprotection agent, was administered before surgery. We hypothesized that the mechanism of NAC may involve the ROS/JNK/Bcl-2 pathway. We evaluated the expression of JNK, P-JNK, Bcl-2, Beclin 1 and LC3 by western blotting and immunohistochemical staining. Autophagosomes were evaluated by transmission electron microscopy (TEM).

Results

We found that ALT, AST and pathological changes were significantly improved in the NAC group. Western blotting analysis showed that the expression levels of Beclin 1 and LC3 were significantly decreased in NAC-treated mice. In addition, JNK, p-JNK, Bax, TNF-α, NF-κB, IL2, IL6 and levels were also decreased in NAC-treated mice.

Conclusion

NAC can prevent HIRI-induced autophagy and apoptosis by influencing the JNK signal pathway. The mechanism is likely to involve attenuation of JNK and p-JNK via scavenged ROS, an indirect increase in Bcl-2 level, and finally an alteration in the balance of Beclin 1 and Bcl-2.  相似文献   

20.

Background

Heat stress can be acutely cytotoxic, and heat stress-induced apoptosis is a prominent pathological feature of heat-related illnesses, although the precise mechanisms by which heat stress triggers apoptosis are poorly defined.

Methods

The percentages of viability and cell death were assessed by WST-1 and LDH release assays. Apoptosis was assayed by DNA fragmentation and caspase activity. Expression of cleaved PARP, Apaf-1, phospho-PERK, Phospho-eIF2a, ATF4, XBP-1s, ATF6, GRP78, phospho-IP3R, RYR and SERCA was estimated by Western blot. The effect of calcium overload was determined using flow cytometric analysis with the fluorescent probe Fluo-3/AM. The generation of ROS (O2 , H2O2, NO) was labeled by confocal laser scanning microscopy images of fluorescently and flow cytometry.

Results

In this study, we found that heat stress in HUVEC cells activated initiators of three major unfolded protein response (UPR) signaling transduction pathways: PERK-eIF2a-ATF4, IRE1-XBP-1S and ATF6 to protect against ER stress, although activation declined over time following cessation of heat stress. Furthermore, we show that intense heat stress may induce apoptosis in HUVEC cells through the calcium-mediated mitochondrial apoptotic pathway, as indicated by elevation of cytoplasmic Ca2+, expression of Apaf-1, activation of caspase-9 and caspase-3, PARP cleavage, and ultimately nucleosomal DNA fragmentation; Reactive oxygen species (ROS) appear to act upstream in this process. In addition, we provide evidence that IP3R upregulation may promote influx of Ca2+ into the cytoplasm after heat stress.

Conclusion

Our findings describe a novel mechanism for heat stress-induced apoptosis in HUVEC cells: following elevation of cytoplasm Ca2+, activation of the mitochondrial apoptotic pathway via the IP3R upregulation, with ROS acting as an upstream regulator of the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号