首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Embryonic stem (ES) cells can differentiate into any tissue, including pancreatic islet cell types. Protocols for the efficient generation of these cells in vitro could have therapeutic applications for type I diabetes. Here we describe a simple method for the differentiation of mouse ES cells into epithelial cells with a gene expression profile consistent with that expected of early pancreatic progenitors (PP). It is based on the addition of sodium butyrate, an agent known to induce chromatin rearrangements. Variations on the length of exposure to butyrate result in the generation of hepatocytes or PP-like cells. qRT-PCR indicates that butyrate induces mesendoderm/definitive endoderm, but not neuroectoderm differentiation. PPlike cells show a strong upregulation of Ipf1/Pdx1, p48, Isl-1 and Nkx6.1, but not Ngn3, NeuroD/ Beta2 or Pax4. PP-like cells also express the epithelial marker E-cadherin. Taken together, our observations suggest that butyrate stimulates early events of pancreatic specification, prior to the onset of endocrine differentiation. These findings are discussed in the context of the development of protocols for the in vitro differentiation of islets.  相似文献   

4.
5.
6.
7.
8.
9.
The pancreas is derived from a pool of multipotent progenitor cells (MPCs) that co-express Pdx-1 and Ptf1a. To more precisely define how the individual and combined loss of Pdx-1 and Ptf1a affects pancreatic MPC specification and differentiation we derived and studied mice bearing a novel Ptf1aYFP allele. While the expression of Pdx-1 and Ptf1a in pancreatic MPCs coincides between E9.5 and 12.5 the developmental phenotypes of Pdx-1 null and Pdx-1; Ptf1a double null mice are indistinguishable, and an early pancreatic bud is formed in both cases. This finding indicates that Pdx-1 is required in the foregut endoderm prior to Ptf1a for pancreatic MPC specification. We also found that Ptf1a is neither required for specification of Ngn3-positive endocrine progenitors nor differentiation of mature β-cells. In the absence of Pdx-1 Ngn3-positive cells were not observed after E9.5. Thus, in contrast to the deletion of Ptf1a, the loss of Pdx-1 precludes the sustained Ngn3-based derivation of endocrine progenitors from pancreatic MPCs. Taken together, these studies indicate that Pdx-1 and Ptf1a have distinct but interdependent functions during pancreatic MPC specification.  相似文献   

10.
11.
12.
13.
We have recently reported the method by which embryonic stem (ES) cells were induced into Pdx1‐expressing cells. To gain insights into the ES cell‐derived Pdx1‐expressing cells, we examined gene expression profiles of the cells by microarray experiments. Microarray analyses followed by a comparison with the data of the cells in developing pancreatic and adult islet suggested that the ES cell‐derived Pdx1‐positive cells were immature pancreatic progenitor cells with endodermal characteristics. The analyses of the genes upregulated in the ES cell‐derived Pdx1‐positive cells would give us knowledge on early pancreatic development. Here, we first listed the genes and found that these contained not only those known to be expressed in the endoderm or pancreatic progenitor cells, but also those known to be involved in left–right axis formation. Second, we examined the gene expression patterns and found that several genes were expressed in the ventral foregut lip at the anterior intestinal portal in E8.5 embryo. Given that the Pdx1/GFP‐expressing cells are first observed in the same region at the anterior intestinal portal, these results suggest that the pancreatic progenitor cells first give rise at the ventral endoderm prior to the formation of dorsal and ventral pancreatic buds.  相似文献   

14.
15.
16.
17.
miR-375 is an important small non-coding RNA that is specifically expressed in islet cells of the pancreas. miR-375 is required for normal pancreatic genesis and influences not only β-cell mass but also α-cell mass. miR-375 is also important to glucose-regulated insulin secretion through the regulation of the expression of Mtpn and Pdk1 genes. When human embryonic stem cells (hESCs) differentiate into endodermal lineages, miR-375 is highly expressed in the definitive endoderm, which suggests that miR-375 may have a distinct role in early development. miR-375 plays an important role in the complex regulatory network of pancreatic development, which could be regulated by pancreatic genes, such as NeuroD1, Ngn3, Pdx1 and Hnf6; additionally, miR-375 regulates genes related to pancreas development, cell growth and proliferation and insulin secretion genes to exert its function. Because of the special role of miR-375, it may be a potential target to treat diabetes. Antagonising miR-375 may enhance the effects of exendin-4 in patients, and controlling the expression of miR-375 could assist mature hESCs-derived β-cells.  相似文献   

18.
19.
20.
Endocrine differentiation in the early embryonic pancreas is regulated by Notch signaling. Activated Notch signaling maintains pancreatic progenitor cells in an undifferentiated state, whereas suppression of Notch leads to endocrine cell differentiation. Yet it is not known what mechanism is employed to inactivate Notch in a correct number of precursor cells to balance progenitor proliferation and differentiation. We report that an established Notch modifier, Manic Fringe (Mfng), is expressed in the putative endocrine progenitors, but not in exocrine pancreatic tissues, during early islet differentiation. Using chicken embryonic endoderm as an assaying system, we found that ectopic Mfng expression is sufficient to induce endodermal cells to differentiate towards an endocrine fate. This endocrine-inducing activity depends on inactivation of Notch. Furthermore, ectopic Mfng expression induces the expression of basic helix-loop-helix gene, Ngn3, and two zinc finger genes, cMyt1 and cMyt3. These results suggest that Mfng-mediated repression of Notch signaling could serve as a trigger for endocrine islet differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号