首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combinatorial co-expression of pheromone receptors, V2Rs   总被引:1,自引:1,他引:0  
  相似文献   

2.
The vomeronasal organ (VNO) is a chemosensory organ specialized in the detection of pheromones in higher vertebrates. In mouse and rat, two gene superfamilies, V1r and V2r vomeronasal receptor genes, are expressed in sensory neurons whose cell bodies are located in, respectively, the apical and basal layers of the VNO epithelium. Here, we report that neurons of the basal layer express another multigene family, termed H2-Mv, representing nonclassical class I genes of the major histocompatibility complex. The nine H2-Mv genes are expressed differentially in subsets of neurons. More than one H2-Mv gene can be expressed in an individual neuron. In situ hybridization with probes for H2-Mv and V2r genes reveals complex and nonrandom combinations of coexpression. While neural expression of Mhc class I molecules is increasingly being appreciated, the H2-Mv family is distinguished by variegated expression across seemingly similar neurons and coexpression with a distinct multigene family encoding neural receptors. Our findings suggest that basal vomeronasal sensory neurons may consist of multiple lineages or compartments, defined by particular combinations of V2r and H2-Mv gene expression.  相似文献   

3.
4.
In rodents, many behavioural responses are triggered by pheromones. These molecules are believed to bind and activate two families of G-protein coupled receptors, namely V1Rs and V2Rs, which are specifically expressed in the chemosensory neurons of the vomeronasal organ. V2Rs are homologous with Group 3 of G-protein-coupled receptors, which includes metabotropic glutamate receptors, calcium-sensing receptors, fish olfactory receptors, and taste receptors for sweet molecules and amino acids. The large extracellular region of these receptors is folded as a dimer and, in this form, binds agonists that in many cases are amino acids. It has recently been reported that V2Rs must be physically associated with specific major histocompatibility complex class Ib molecules (MHC) for their expression in both mouse vomeronasal neurons and heterologous cell lines. Here, we show that in contrast to the other V2Rs, V2R2, an atypical member of this receptor family, can be successfully and abundantly expressed by insect cells without the requirement of escort molecules like MHC. Moreover, the extracellular binding domain of V2R2, secreted as a soluble product, forms dimers via cysteine-mediated sulphur bridges. Overall, the data presented in this paper confirm that V2R2 diverges from the other members of the V2R family and suggest a different role for this receptor in pheromonal communication.  相似文献   

5.
6.
The vomeronasal organ (VNO) of the mouse has two neuronal compartments expressing distinct families of pheromone receptors, the V1Rs and the V2Rs. We report here that two families of major histocompatibility complex (MHC) class Ib molecules, the M10 and the M1 families, show restricted expression in V2R-expressing neurons. Our data suggest that neurons expressing a given V2R specifically co-express one or a few members of the M10 family. Biochemical and immunocytochemical analysis demonstrates that in VNO sensory dendrites M10s belong to large multi-molecular complexes that include pheromone receptors and beta2-microglobulin (beta2m). In cultured cells, M10s appear to function as escort molecules in transport of V2Rs to the cell surface. Accordingly, beta2m-deficient mice exhibit mislocalization of V2Rs in the VNO and a specific defect in male-male aggressive behavior. The functional characterization of M10 highlights an unexpected role for MHC molecules in pheromone detection by mammalian VNO neurons.  相似文献   

7.
Most tetrapod vertebrates have 2 olfactory systems, the main olfactory system (MOS) and the vomeronasal system (VNS). According to the dual olfactory hypothesis, the MOS detects environmental odorants, whereas the VNS recognizes intraspecific pheromonal cues. However, this strict functional distinction has been blurred by recent reports that both systems can perceive both types of signals. Studies of a limited number of receptors suggest that MOS receptors are broadly tuned generalists, whereas VNS receptors are narrowly tuned specialists. However, whether this distinction applies to all MOS and VNS receptors remains unknown. The differential tuning hypothesis predicts that generalist MOS receptors detect an overlapping set of ligands and thus are more likely to be conserved over evolutionary time than specialist VNS receptors, which would evolve in a more lineage-specific manner. Here we test this prediction for all olfactory chemoreceptors by examining the evolutionary patterns of MOS-expressed odorant receptors (ORs) and trace amine-associated receptors (TAARs) and VNS-expressed vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs) in 7 tetrapods (mouse, rat, dog, opossum, platypus, chicken, and frog). The phylogenies of V1Rs and V2Rs show abundant lineage-specific gene gains/losses and virtually no one-to-one orthologs between species. Opposite patterns are found for ORs and TAARs. Analysis of functional data and ligand-binding sites of ORs confirms that paralogous chemoreceptors are more likely than orthologs to have different ligands and that functional divergence between paralogous chemoreceptors is established relatively quickly following gene duplication. Together, these results strongly suggest that the functional profile of the VNS chemoreceptor repertoire evolves much faster than that of the MOS chemoreceptor repertoire and that the differential tuning hypothesis applies to the majority, if not all, of MOS and VNS receptors.  相似文献   

8.
9.
The mechanisms that underlie axonal pathfinding of vomeronasal neurons from the vomeronasal organ (VNO) in the periphery to select glomeruli in the accessory olfactory bulb (AOB) are not well understood. Neuropilin-2, a receptor for secreted semaphorins, is expressed in V1R- and V3R-expressing, but not V2R-expressing, postnatal vomeronasal neurons. Analysis of the vomeronasal nerve in neuropilin-2 (npn-2) mutant mice reveals pathfinding defects at multiple choice points. Vomeronasal sensory axons are severely defasciculated and a subset innervates the main olfactory bulb (MOB). While most axons of V1R-expressing neurons reach the AOB and converge into distinct glomeruli in stereotypic locations, they are no longer restricted to their normal anterior AOB target zone. Thus, Npn-2 and candidate pheromone receptors play distinct and complementary roles in promoting the wiring and patterning of sensory neurons in the accessory olfactory system.  相似文献   

10.
Pheromones are detected by the vomeronasal organ using members of two receptor superfamilies: the V1Rs and V2Rs. New studies show that MHC class I molecules are co-expressed in particular combinations with specific V2Rs in the vomeronasal organ. The role of these MHC molecules is unknown, but they may be of considerable biological significance.  相似文献   

11.
Vertebrate vomeronasal chemoreception plays important roles in many aspects of an organism's daily life, such as mating, territoriality, and foraging. Vomeronasal type 1 receptors (V1Rs) and vomeronasal type 2 receptors (V2Rs), 2 large families of G protein-coupled receptors, serve as vomeronasal receptors to bind to various pheromones and odorants. Contrary to the previous observations of reduced olfaction in aquatic and semiaquatic mammals, we here report the surprising finding that the platypus, a semiaquatic monotreme, has the largest V1R repertoire and nearly largest combined repertoire of V1Rs and V2Rs of all vertebrates surveyed, with 270 intact genes and 579 pseudogenes in the V1R family and 15 intact genes, 55 potentially intact genes, and 57 pseudogenes in the V2R family. Phylogenetic analysis shows a remarkable expansion of the V1R repertoire and a moderate expansion of the V2R repertoire in platypus since the separation of monotremes from placentals and marsupials. Our results challenge the view that olfaction is unimportant to aquatic mammals and call for further study into the role of vomeronasal reception in platypus physiology and behavior.  相似文献   

12.

Background

Teleost fishes do not have a vomeronasal organ (VNO), and their vomeronasal receptors (V1Rs, V2Rs) are expressed in the main olfactory epithelium (MOE), as are odorant receptors (ORs) and trace amine-associated receptors (TAARs). In this study, to obtain insights into the functional distinction among the four chemosensory receptor families in teleost fishes, their evolutionary patterns were examined in zebrafish, medaka, stickleback, fugu, and spotted green pufferfish.

Methodology/Principal Findings

Phylogenetic analysis revealed that many lineage-specific gene gains and losses occurred in the teleost fish TAARs, whereas only a few gene gains and losses have taken place in the teleost fish vomeronasal receptors. In addition, synonymous and nonsynonymous nucleotide substitution rate ratios (KA/KS) in TAARs tended to be higher than those in ORs and V2Rs.

Conclusions/Significance

Frequent gene gains/losses and high KA/KS in teleost TAARs suggest that receptors in this family are used for detecting some species-specific chemicals such as pheromones. Conversely, conserved repertoires of V1R and V2R families in teleost fishes may imply that receptors in these families perceive common odorants for teleosts, such as amino acids. Teleost ORs showed intermediate evolutionary pattern between TAARs and vomeronasal receptors. Many teleost ORs seem to be used for common odorants, but some ORs may have evolved to recognize lineage-specific odors.  相似文献   

13.
Wagner S  Gresser AL  Torello AT  Dulac C 《Neuron》2006,50(5):697-709
Pheromone detection by the vomeronasal organ (VNO) is thought to rely on activation of specific receptors from the V1R and V2R gene families, but the central representation of pheromone receptor activation remains poorly understood. We generated transgenic mouse lines in which projections from multiple populations of VNO neurons, each expressing a distinct V1R, are differentially labeled with fluorescent proteins. This approach revealed that inputs from neurons expressing closely related V1Rs intermingle within shared, spatially conserved domains of the accessory olfactory bulb (AOB). Mitral cell-glomerular connectivity was examined by injecting intracellular dyes into AOB mitral cells and monitoring dendritic contacts with genetically labeled glomeruli. We show that individual mitral cells extend dendrites to glomeruli associated with different, but likely closely related, V1Rs. This organization differs from the labeled line of OR signaling in the main olfactory system and suggests that integration of information may already occur at the level of the AOB.  相似文献   

14.
Yang H  Shi P  Zhang YP  Zhang J 《Genomics》2005,86(3):306-315
Pheromones are chemicals produced and detected by conspecifics to elicit social/sexual physiological and behavioral responses, and they are perceived primarily by the vomeronasal organ (VNO) in terrestrial vertebrates. Two large superfamilies of G protein-coupled receptors, V1rs and V2rs, have been identified as pheromone receptors in vomeronasal sensory neurons. Based on a computational analysis of the mouse and rat genome sequences, we report the first global draft of the V2r gene repertoire, composed of approximately 200 genes and pseudogenes. Rodent V2rs are subject to rapid gene births/deaths and accelerated amino acid substitutions, likely reflecting the species-specific nature of pheromones. Vertebrate V2rs appear to have originated twice prior to the emergence of the VNO in ancestral tetrapods, explaining seemingly inconsistent observations among different V2rs. The identification of the entire V2r repertoire opens the door to genomic-level studies of the structure, function, and evolution of this diverse group of sensory receptors.  相似文献   

15.
The past few years have delivered substantial progress in understanding the molecular logic of the mammalian vomeronasal system. Selective expression of vomeronasal receptors and high response selectivity of vomeronasal receptor neurons suggest that pheromones are encoded by labeled lines at the level of the vomeronasal organ: each pheromonal compound is represented by the activation of a small and exclusive subset of receptor neurons. Labeled lines might be transferred to the accessory olfactory bulb through convergent connections. The key challenges ahead will be to identify the pheromonal ligands of the receptors and unravel the functional connectivity from the vomeronasal organ to the hypothalamus.  相似文献   

16.
Assortative mating, a potentially efficient prezygotic reproductive barrier, may prevent loss of genetic potential by avoiding the production of unfit hybrids (i.e., because of hybrid infertility or hybrid breakdown) that occur at regions of secondary contact between incipient species. In the case of the mouse hybrid zone, where two subspecies of Mus musculus (M. m. domesticus and M. m. musculus) meet and exchange genes to a limited extent, assortative mating requires a means of subspecies recognition. We based the work reported here on the hypothesis that, if there is a pheromone sufficiently diverged between M. m. domesticus and M. m. musculus to mediate subspecies recognition, then that process must also require a specific receptor(s), also sufficiently diverged between the subspecies, to receive the signal and elicit an assortative mating response. We studied the mouse V1R genes, which encode a large family of receptors in the vomeronasal organ (VNO), by screening Perlegen SNP data and identified one, Vmn1r67, with 24 fixed SNP differences most of which (15/24) are nonsynonymous nucleotide substitutions between M. m. domesticus and M. m. musculus. We observed substantial linkage disequilibrium (LD) between Vmn1r67 and Abpa27, a mouse salivary androgen-binding protein gene that encodes a proteinaceous pheromone (ABP) capable of mediating assortative mating, perhaps in conjunction with its bound small lipophilic ligand. The LD we observed is likely a case of association rather than residual physical linkage from a very recent selective sweep, because an intervening gene, Vmn1r71, shows significant intra(sub)specific polymorphism but no inter(sub)specific divergence in its nucleotide sequence. We discuss alternative explanations of these observations, for example that Abpa27 and Vmn1r67 are coevolving as signal and receptor to reinforce subspecies hybridization barriers or that the unusually divergent Vmn1r67 allele was not a product of fast positive selection, but was derived from an introgressed allele, possibly from Mus spretus.  相似文献   

17.
Two G protein subfamilies, Go(alpha) and Gi(alpha 2), were identified and localized immunohistochemically in the vomeronasal organ (VNO) of 5-month-old human fetuses. Immunoreactivity for Go(alpha) and Gi(alpha 2) was present in a subset of vomeronasal epithelial cells. Prominent immunoreactivity was observed in apical processes and their apical terminals facing onto the vomeronasal lumen. Nerve fibers associated with the VNO exhibited intense immunoreactivity for Go(alpha) and weak immunoreactivity for Gi(alpha 2). Since Go(alpha) and Gi(alpha 2) are characteristically expressed and coupled with putative pheromone receptors in rodent vomeronasal receptor neurons, the present results suggest the possibility that vomeronasal epithelial cells containing Go(alpha) and Gi(alpha 2) in human fetuses are chemosensory neurons.  相似文献   

18.
Pheromonal communication is widespread in salamanders and newts and may also be important in some frogs and toads. Several amphibian pheromones have been behaviorally, biochemically and molecularly identified. These pheromones are typically peptides or proteins. Study of pheromone evolution in plethodontid salamanders has revealed that courtship pheromones have been subject to continual evolutionary change, perhaps as a result of co-evolution between the pheromonal ligand and its receptor. Pheromones are detected by the vomeronasal organ and main olfactory epithelium. Chemosensory neurons express vomeronasal receptors or olfactory receptors. Frogs have relatively large numbers of vomeronasal receptors that are transcribed in both the vomeronasal organ and the main olfactory epithelium. Salamander vomeronasal receptors apparently are restricted to the vomeronasal organ. To date, no chemosensory ligands have been matched to vomeronasal receptors or olfactory receptors so it is unknown whether particular receptor types are (1) specialized for detection of pheromones versus other chemosignals, or (2) specialized for detection of volatile, nonvolatile, or water-borne chemosignals. Despite progress in understanding amphibian pheromonal communication, only a small fraction of amphibian species have been examined. Study of additional species of amphibians will indicate which traits related to pheromonal communication are evolutionarily conserved and which traits have diverged over time.  相似文献   

19.
Mammals possess two anatomically and functionally distinct olfactory systems. The olfactory epithelium (OE) detects volatile odorants, while the vomeronasal organ (VNO) detects pheromones that elicit innate reproductive and social behavior within a species. In rodent VNO, three multigene families that encode the putative pheromone receptors, V1Rs, V2Rs and V3Rs, have been expressed. We have identified the V1R homologue genes from goat genomic DNA (gV1R genes). Deduced amino acid sequences of gV1R genes show 40-50% and 20-25% identity to those of rat and mouse V1R and V3R genes, respectively, suggesting that the newly isolated goat receptor genes are members of the V1R gene family. One gene (gV1R1 gene) has an open reading frame that encodes a polypeptide of 309 amino acids. It is expressed not only in VNO but also in OE. In situ hybridization analysis revealed that gV1R1 -expressing cells were localized in neuropithelial layers of VNO and OE. These results suggest that the goat may detect pheromone molecules through two distinct olfactory organs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号