首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DYT1 dystonia is a primary generalized early-onset torsion dystonia caused by mutations in DYT1 that codes for torsinA and has an autosomal dominant inheritance pattern with approximately 30% penetrance. Abnormal activity in the pallidal-thalamic-cortical circuit, especially in the globus pallidus internus, is the proposed cause of dystonic symptoms. However, recent neuroimaging studies suggest significant contribution of the cerebral cortex. To understand the contribution of the cerebral cortex to dystonia, we produced cerebral cortex-specific Dyt1 conditional knockout mice and analysed their behaviour. The conditional knockout mice exhibited motor deficits and hyperactivity that mimic the reported behavioural deficits in Dyt1 DeltaGAG knockin heterozygous and Dyt1 knockdown mice. Although the latter two mice exhibit lower levels of dopamine metabolites in the striatum, the conditional knockout mice did not show significant alterations in the striatal dopamine and its metabolites levels. The conditional knockout mice had well-developed whisker-related patterns in somatosensory cortex, suggesting formations of synapses and neural circuits were largely unaffected. The results suggest that the loss of torsinA function in the cerebral cortex alone is sufficient to induce behavioural deficits associated with Dyt1 DeltaGAG knockin mutation. Developing drugs targeting the cerebral cortex may produce novel medical treatments for DYT1 dystonia patients.  相似文献   

2.

Background  

Repeated exposure to methamphetamine (METH) can cause not only neurotoxicity but also addiction. Behavioral sensitization is widely used as an animal model for the study of drug addiction. We previously reported that the μ-opioid receptor knockout mice were resistant to METH-induced behavioral sensitization but the mechanism is unknown.  相似文献   

3.
D5 dopamine receptor knockout mice and hypertension   总被引:9,自引:0,他引:9  
Abnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. All of the five dopamine receptor genes (D1, D2, D3, D4, and D5) expressed in mammals and some of their regulators are in loci linked to hypertension in humans and in rodents. Under normal conditions, D1-like receptors (D1 and D5) inhibit sodium transport in the kidney and the intestine. However, in the Dahl salt-sensitive and spontaneously hypertensive rats, and humans with essential hypertension, the D1-like receptor-mediated inhibition of sodium transport is impaired because of an uncoupling of the D1-like receptor from its G protein/effector complex. The uncoupling is genetic, and receptor-, organ-, and nephron segment-specific. In human essential hypertension, the uncoupling of the D1 receptor from its G protein/effector complex is caused by an agonist-independent serine phosphorylation/desensitization by constitutively active variants of the G protein-coupled receptor kinase type 4. The D5 receptor is also important in blood pressure regulation. Disruption of the D5 or the D1 receptor gene in mice increases blood pressure. However, unlike the D1 receptor, the hypertension in D5 receptor null mice is caused by increased activity of the sympathetic nervous system, apparently due to activation of oxytocin, V1 vasopressin, and non-N-methyl D-aspartate receptors in the central nervous system. The cause of the activation of these receptors remains to be determined.  相似文献   

4.
5.
Comment on: Ljungberg MC, et al. Dis Model Mech 2009; 2:389-98.  相似文献   

6.
A wealth of studies has implicated oxytocin (Oxt) and its receptors (Oxtr) in the mediation of social behaviors and social memory in rodents. It has been suggested that failures in this system contribute to deficits in social interaction that characterize autism spectrum disorders (ASD). In the current analyses, we investigated the expression of autism-related behaviors in mice that lack the ability to synthesize the oxytocin receptor itself, Oxtr knockout (KO) mice, as compared to their wild-type (WT) littermates. In the visible burrow system, Oxtr KO mice showed robust reductions in frontal approach, huddling, allo-grooming, and flight, with more time spent alone, and in self-grooming, as compared to WT. These results were corroborated in the three-chambered test: unlike WT, Oxtr KO mice failed to spend more time in the side of the test box containing an unfamiliar CD-1 mouse. In the social proximity test, Oxtr KO mice showed clear reductions in nose to nose and anogenital sniff behaviors oriented to an unfamiliar C57BL/6J (B6) mouse. In addition, our study revealed no differences between Oxtr WT and KO genotypes in the occurrence of motor and cognitive stereotyped behaviors. A significant genotype effect was found in the scent marking analysis, with Oxtr KO mice showing a decreased number of scent marks, as compared to WT. Overall, the present data indicate that the profile for Oxtr KO mice, including consistent social deficits, and reduced levels of communication, models multiple components of the ASD phenotype. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

7.
Behavioral sensitization to psychostimulants manifests as an increased locomotor response with repeated administration. Dopamine systems are accepted to play a fundamental role in sensitization, but the role of specific dopamine receptor subtypes has not been completely defined. This study used the combination of dopamine D2 receptor-deficient mice and a D1-like antagonist to examine dopamine D1 and D2 receptor involvement in acute and sensitized locomotor responses to methamphetamine. Absence of the dopamine D2 receptor resulted in attenuation of the acute stimulant effects of methamphetamine. Mutant and wild-type mice exhibited sensitization that lasted longer within the time period of the challenge test in the mutant animals. Pretreatment with the D1-like receptor antagonist SCH 23390 produced more potent reductions in the acute and sensitized locomotor responses to methamphetamine in D2 receptor-deficient mice than in wild-type mice; however, the expression of locomotor sensitization when challenged with methamphetamine alone was equivalently attenuated by previous treatment with SCH 23390. These data suggest that dopamine D2 receptors play a key role in the acute stimulant and sensitizing effects of methamphetamine and act in concert with D1-like receptors to influence the acquisition of methamphetamine-induced behavioral sensitization, traits that may influence continued methamphetamine use.  相似文献   

8.
We have developed a presenilin-1 (PS1) conditional knockout mouse (cKO), in which PS1 inactivation is restricted to the postnatal forebrain. The PS1 cKO mouse is viable and exhibits no gross abnormalities. The carboxy-terminal fragments of the amyloid precursor protein differentially accumulate in the cerebral cortex of cKO mice, while generation of beta-amyloid peptides is reduced. Expression of Notch downstream effector genes, Hes1, Hes5, and Dll1, is unaffected in the cKO cortex. Although basal synaptic transmission, long-term potentiation, and long-term depression at hippocampal area CA1 synapses are normal, the PS1 cKO mice exhibit subtle but significant deficits in long-term spatial memory. These results demonstrate that inactivation of PS1 function in the adult cerebral cortex leads to reduced Abeta generation and subtle cognitive deficits without affecting expression of Notch downstream genes.  相似文献   

9.
10.
Long-term postnatal treatment of rats with the dopamine D2 receptor antagonist, spiroperidol, results in the impaired development of striatal D2 receptors. Because the tripeptide prolyl-leucyl-glycinamide (MIF-1) attenuates haloperidol-induced up-regulation of striatal dopamine D2 receptors in adult rats, we studied the effect of MIF-1 on the spiroperidol-induced alteration of striatal D2 ontogeny. Postnatal treatment of rats with spiroperidol (1.0 mg/kg/day, IP, x32 days from birth) resulted in a 74% decrease in the Bmax for [3H]spiroperidol binding with no change in the Kd at 5 weeks. When rats were studied at 8 weeks, in the absence of additional treatment, total specific [3H]spiroperidol binding was reduced by 59%. While MIF-1 alone (1.0 mg/kg/day, IP, x32 days from birth) had no effect on [3H]spiroperidol binding, MIF-1 completely attenuated the ontogenic impairment of striatal D2 receptors that was produced by spiroperidol treatment. At 5 weeks the Bmax for [3H]spiroperidol binding was at the saline control level in the group of rats cotreated with spiroperidol and MIF-1. At 8 weeks, with no additional treatments, the specific binding of [3H]spiroperidol to striatum was also at control levels in the group cotreated with spiroperidol and MIF-1. These findings demonstrate that MIF-1 attenuates spiroperidol-induced impairment of development of striatal dopamine D2 receptors in rats.  相似文献   

11.
Patients with multiple endocrine neoplasia type 1 (MEN1) develop multiple endocrine tumors, primarily affecting the parathyroid, pituitary, and endocrine pancreas, due to the inactivation of the MEN1 gene. A conditional mouse model was developed to evaluate the loss of the mouse homolog, Men1, in the pancreatic beta cell. Men1 in these mice contains exons 3 to 8 flanked by loxP sites, such that, when the mice are crossed to transgenic mice expressing cre from the rat insulin promoter (RIP-cre), exons 3 to 8 are deleted in beta cells. By 60 weeks of age, >80% of mice homozygous for the floxed Men1 gene and expressing RIP-cre develop multiple pancreatic islet adenomas. The formation of adenomas results in elevated serum insulin levels and decreased blood glucose levels. The delay in tumor appearance, even with early loss of both copies of Men1, implies that additional somatic events are required for adenoma formation in beta cells. Comparative genomic hybridization of beta cell tumor DNA from these mice reveals duplication of chromosome 11, potentially revealing regions of interest with respect to tumorigenesis.  相似文献   

12.
Brain-derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) are members of the neurotrophin family and are expressed in the developing and adult tongue papillae. BDNF null-mutated mice exhibit specific impairments related to innervation and development of the gustatory system while NT-3 null mice have deficits in their lingual somatosensory innervation. To further evaluate the functional specificity of these neurotrophins in the peripheral gustatory system, we generated double BDNF/NT-3 knockout mice and compared the phenotype to BDNF?/? and wild-type mice. Taste papillae morphology was severely distorted in BDNF?/?xNT-3?/? mice compared to single BDNF?/? and wild-type mice. The deficits were found throughout the tongue and all gustatory papillae. There was a significant loss of fungiform papillae and the papillae were smaller in size compared to BDNF?/? and wild-type mice. Circumvallate papillae in the double knockouts were smaller and did not contain any intraepithelial nerve fibers. BDNF?/?xNT-3?/? mice exhibited additive losses in both somatosensory and gustatory innervation indicating that BDNF and NT-3 exert specific roles in the innervation of the tongue. However, the additional loss of fungiform papillae and taste buds in BDNF?/?xNT-3?/? mice compared to single BDNF knockout mice indicate a synergistic functional role for both BDNF-dependent gustatory and NT-3-dependent somatosensory innervations in taste bud and taste papillae innervation and development.  相似文献   

13.
In men, as testosterone levels decrease, fat mass increases and muscle mass decreases. Increased fat mass in men, in particular central obesity, is a major risk factor for type 2 diabetes, cardiovascular disease, and all-cause mortality. Testosterone treatment has been shown to decrease fat mass and increase fat-free mass. We hypothesize that androgens act directly via the DNA binding-dependent actions of the androgen receptor (AR) to regulate genes controlling fat mass and metabolism. The aim of this study was to determine the effect of a global DNA binding-dependent (DBD) AR knockout (DBD-ARKO) on the metabolic phenotype in male mice by measuring body mass, fat mass, food intake, voluntary physical activity, resting energy expenditure, substrate oxidation rates, serum glucose, insulin, lipid, and hormone levels, and metabolic gene expression levels and second messenger protein levels. DBD-ARKO males have increased adiposity despite a decreased total body mass compared with wild-type (WT) males. DBD-ARKO males showed reduced voluntary activity, decreased food intake, increased serum leptin and adiponectin levels, an altered lipid metabolism gene profile, and increased phosphorylated CREB levels compared with WT males. This study demonstrates that androgens acting via the DNA binding-dependent actions of the AR regulate fat mass and metabolism in males and that the increased adiposity in DBD-ARKO male mice is associated with decreased voluntary activity, hyperleptinemia and hyperadiponectinemia and not with insulin resistance, increased food intake, or decreased resting energy expenditure.  相似文献   

14.
There is growing evidence that sphingosine 1-phosphate (S1P) plays an important role in regulating the development, morphology, and function of the cardiovascular system. There is little data, however, regarding the relative contribution of endogenous S1P and its cognate receptors (referred to as S1P(1-5)) to cardiovascular homeostasis. We used S1P(2) receptor knockout mice (S1P(2)(-/-)) to evaluate the role of S1P(2) in heart and vascular function. There were no significant differences in blood pressure between wild-type and S1P(2)(-/-) mice, measured in awake mice. Cardiac function, evaluated in situ by using a Millar catheter, was also not different in S1P(2)(-/-) mice under baseline or stimulated conditions. In vivo analysis of vascular function by flowmetry revealed decreases in mesenteric and renal resistance in S1P(2)(-/-) mice, especially during vasoconstriction with phenylephrine. In intact aortic rings, the concentration-force relations for both KCl and phenylephrine were right shifted in S1P(2)(-/-) mice, whereas the maximal isometric forces were not different. By contrast, in deendothelialized rings the concentration-force relations were not different but the maximal force was significantly greater in S1P(2)(-/-) aorta. Histologically, there were no apparent differences in vascular morphology. These data suggest that the S1P(2) receptor plays an important role in the function of the vasculature and is an important mediator of normal hemodynamics. This is mediated, at least in part, through an effect on the endothelium, but direct effects on vascular smooth muscle cannot be ruled out and require further investigation.  相似文献   

15.
Stromal-derived factor (SDF)-1/CXCL12 is a cytokine that is involved in organogenesis, hematopoiesis, chemoattraction, and wound healing. An SDF-1 knockout mouse (SDF-1-/-) has provided important insights into the role of SDF-1 in fetal development. Because the SDF-1 knockout is lethal in the perinatal period, we have created a conditional SDF-1 knockout mouse. In the present study, we induced conditionally knocked out SDF-1 in neonatal mice and found that lung development was compromised; neonatal lungs showed increased alveolar airspace and abnormal ultrastructure. Conditional knockout of SDF-1 in adult mice resulted in an emphysemic morphology, with increased alveolar airspace and thickened alveolar septa. Fluorescence angiography showed pulmonary vessel hyperdilation. To determine whether the hyperdilation involved nitric oxide, we inhibited endothelial nitric oxide synthase (eNOS) with N (G)-nitro-L- arginine methyl ester. This resulted in the inhibition of pulmonary vessel hyperdilation. Western blot results showed increased phosphorylation of eNOS in our induced SDF-1 knockout mice, indicating that eNOS is normally repressed in the presence of SDF-1, and that activation of eNOS contributes to pulmonary pathology. Thus, a conditional knockout mouse has been successsfully created for SDF-1; initial characterization indicates that SDF-1 is intimately involved in lung development and physiology.  相似文献   

16.
The function of the clathrin coat in synaptic vesicle endocytosis is assisted by a variety of accessory factors, among which amphiphysin (amphiphysin 1 and 2) is one of the best characterized. A putative endocytic function of amphiphysin was supported by dominant-negative interference studies. We have now generated amphiphysin 1 knockout mice and found that lack of amphiphysin 1 causes a parallel dramatic reduction of amphiphysin 2 selectively in brain. Cell-free assembly of endocytic protein scaffolds is defective in mutant brain extracts. Knockout mice exhibit defects in synaptic vesicle recycling that are unmasked by stimulation and suggest impairments at multiple stages of the cycle. These defects correlate with increased mortality due to rare irreversible seizures and with major learning deficits, suggesting a critical role of amphiphysin for higher brain functions.  相似文献   

17.
Many atypical antipsychotic drugs cause weight gain, but the mechanism of this weight gain is unclear. To dissect the role of the dopamine D2 receptor (D2R), an important receptor in the pharmacology of antipsychotic drugs, we analyzed the effect of olanzapine, risperidone, and ziprasidone on changes in body weight and food intake in male wild-type (WT) and D2R knockout (D2R−/−) mice. The oral delivery of atypical antipsychotics, olanzapine (5 and 10 mg/kg), risperidone (0.1 and 1.0 mg/kg) and ziprasidone (10 and 20 mg/kg) in both strains mice for 2 weeks suppressed body weight gain, except for olanzapine treatment in D2R−/− mice. Olanzapine treatment suppressed body weight gain and decreased food intake in WT mice, but also reduced fat body mass and locomotor activity, whereas D2R−/− mice did not show these changes. Ziprasidone and risperidone treatment produced similar responses in WT and D2R−/− mice. These data suggest the involvement of D2R in the effect of olanzapine on metabolic regulation. Further studies are required to explore the implications of D2R activity in antipsychotic-mediated metabolic complications.  相似文献   

18.
Lgl1 was initially identified as a tumour suppressor in flies and is characterised as a key regulator of epithelial polarity and asymmetric cell division. A previous study indicated that More-Cre-mediated Lgl1 knockout mice exhibited significant brain dysplasia and died within 24 h after birth. To overcome early neonatal lethality, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in almost all cells in the cerebellum, and we examined the functions of Lgl1 in the cerebellum. Impaired motor coordination was detected in the mutant mice. Consistent with this abnormal behaviour, homozygous mice possessed a smaller cerebellum with fewer lobes, reduced granule precursor cell (GPC) proliferation, decreased Purkinje cell (PC) quantity and dendritic dysplasia. Loss of Lgl1 in the cerebellum led to hyperproliferation and impaired differentiation of neural progenitors in ventricular zone. Based on the TUNEL assay, we observed increased apoptosis in the cerebellum of mutant mice. We proposed that impaired differentiation and increased apoptosis may contribute to decreased PC quantity. To clarify the effect of Lgl1 on cerebellar granule cells, we used Math1-Cre to specifically delete Lgl1 in granule cells. Interestingly, the Lgl1-Math1 conditional knockout mice exhibited normal proliferation of GPCs and cerebellar development. Thus, we speculated that the reduction in the proliferation of GPCs in Lgl1-Pax2 conditional knockout mice may be secondary to the decreased number of PCs, which secrete the mitogenic factor Sonic hedgehog to regulate GPC proliferation. Taken together, these findings suggest that Lgl1 plays a key role in cerebellar development and folia formation by regulating the development of PCs.  相似文献   

19.
目的:研究多巴胺(DA)对小鼠学习记忆障碍的影响及其机制。方法:实验1采用腹腔注射东莨菪碱0.3mg/kg(SCOP 0.3,n=10)和3.0mg/kg(SCOP3.0),连续注射60d,在第53天和60天用避暗法测定记忆行为,第60天处死动物后取脑用免疫组化的方法测定TH-ir和Fos-ir的表达。实验2根据实验1结果造小鼠记忆障碍的模型后将小鼠分成4组,1组腹腔注射生理盐水(NS),其他3组腹腔注射阿朴吗啡0.1mg/kg(APO 0.1)、0.5mg/kg(APO 0.5)和2.0mg/kg(APO 2.0),每组10只动物,连续30d。在注射阿朴吗啡第23天和30天测定避暗行为。第30天处死动物后取脑用免疫组化的方法测定Fos-ir和TH-ir的表达。结果:避暗法测定记忆发现东莨菪碱抑制小鼠的记忆。第60天,东莨菪碱3.0mg/kg组(SCOP3.0)的潜伏期比NS组显著缩短,仅是NS组的1/4(P〉0.05),错误次数比Ns组增加了大约4倍(P〉0.05),SCOP 0.3组的潜伏期和错误次数与NS组没有明显差异。免疫组化结果表明在伏隔核和海马区的CAl和CA3的Fos-ir细胞数明显降低(P〈0.01),且被盖腹侧区的酪氨酸羟化酶(TH-ir)和共表达TH/Fos-ir细胞显著减少(P〈0.01)。注射阿朴吗啡后明显缓解了小鼠的记忆障碍,且腹侧被盖区TH-ir细胞增加(P〈0.05)。结论:阿朴吗啡明显减轻东莨菪碱诱导的小鼠记忆障碍,是通过增强腹侧被盖区多巴胺神经元的活性来实现的。  相似文献   

20.
Fragile X syndrome (FXS) is a common cause of inherited intellectual disability and a well-characterized form of autism spectrum disorder. As brain-derived neurotrophic factor (BDNF) is implicated in the pathophysiology of FXS we examined the effects of reduced BDNF expression on the behavioral phenotype of an animal model of FXS, Fmr1 knockout (KO) mice, crossed with mice carrying a deletion of one copy of the Bdnf gene (Bdnf(+/-)). Fmr1 KO mice showed age-dependent alterations in hippocampal BDNF expression that declined after the age of 4 months compared to wild-type controls. Mild deficits in water maze learning in Bdnf(+/-) and Fmr1 KO mice were exaggerated and contextual fear learning significantly impaired in double transgenics. Reduced BDNF expression did not alter basal nociceptive responses or central hypersensitivity in Fmr1 KO mice. Paradoxically, the locomotor hyperactivity and deficits in sensorimotor learning and startle responses characteristic of Fmr1 KO mice were ameliorated by reducing BNDF, suggesting changes in simultaneously and in parallel working hippocampus-dependent and striatum-dependent systems. Furthermore, the obesity normally seen in Bdnf(+/-) mice was eliminated by the absence of fragile X mental retardation protein 1 (FMRP). Reduced BDNF decreased the survival of newborn cells in the ventral part of the hippocampus both in the presence and absence of FMRP. Since a short neurite phenotype characteristic of newborn cells lacking FMRP was not found in cells derived from double mutant mice, changes in neuronal maturation likely contributed to the behavioral phenotype. Our results show that the absence of FMRP modifies the diverse effects of BDNF on the FXS phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号