首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purposes of this study were (1) to evaluate the histologic differences between synostotic versus deformational suture abnormalities and (2) to correlate these histologic findings with anatomic and three-dimensional computed tomographic (CT) scans. We examined three infants with premature metopic synostosis; one infant also had microcephaly trisomy 13 and curious overriding of the coronal sutures. The three-dimensional CT scans demonstrated obliteration of the metopic suture inferiorly. Histologic sections of this suture showed complete bony stenosis. The same pattern was found in all three infants, including the two infants with trigonocephaly who did not have trisomy 13 or microcephaly. In the trisomy 13 infant, the overlapped inferior coronal suture was obliterated on CT examination. However, histologic sections in this region showed a merging of bone; there was no synostosis. In summary, three-dimensional CT re-formation correlated with metopic suture histology. "Stenotic" fusion existed in all infants with trigonocephaly, those with normal and abnormal karyotypes, with and without microcephaly. However, three-dimensional CT re-formation of the trisomic infant showed opacification of the coronal suture in the areas of greatest overlap, whereas histology revealed a curious bone remodeling pattern, possibly a precursor to "deformational" craniosynostosis.  相似文献   

2.
Distraction osteogenesis has been used increasingly for midfacial advancement in patients with syndromic craniosynostosis and in severe developmental hypoplasia of the midface. In these patients, the degree of advancement required is often so great that restriction of the adjacent soft tissues may preclude stable advancement in one stage. Whereas distraction is an ideal solution by which to gradually lengthen both the bones and the soft tissues, potential problems remain in translating the distraction forces to the midface. In these patients, severe developmental hypoplasia may be associated with weak union between the zygoma and the maxilla, increasing the chance of zygomaticomaxillary dysjunction when using internal devices that translate distraction force to the maxilla through the zygoma. Eight cases are reported in which either internal or external distraction systems were used for midface advancement following Le Fort III (n = 7) or monobloc (n = 1) osteotomies. Cases of patients in whom hypoplasia at the zygomaticomaxillary junction altered or impaired plans for midface distraction were reported from three host institutions. Seven patients had midface hypoplasia associated with syndromic craniosynostosis, and one patient had severe developmental midface hypoplasia. The distraction protocol was modified to successfully complete midface advancement in light of weakness at the zygomaticomaxillary junction in seven patients. Modifications included change from an internal to an external distraction system in two patients, rigid fixation and bone graft stabilization of the midface in one patient, and plate stabilization of a fractured or unstable zygomaticomaxillary junction followed by resumption of internal distraction in four patients. Previous infection and bone loss involving both malar complexes precluded one patient from being a candidate for an internal distraction system. Using a problem-based approach, successful advancement of the midface ranging from 9 to 26 mm at the occlusal level as measured by preoperative and postoperative cephalograms was undergone by all patients. Advantages and disadvantages of the respective distraction systems are reviewed to better understand unique patient characteristics leading to the successful use of these devices for correction of severe midface hypoplasia.  相似文献   

3.
Premature closure of cranial sutures, which serve as growth centers for the skull vault, result in craniosynostosis. In the mouse posterior frontal (PF) suture closes by endochondral ossification, whereas sagittal (SAG) remain patent life time, although both are neural crest tissue derived. We therefore, investigated why cranial sutures of same tissue origin adopt a different fate. We demonstrated that closure of the PF suture is tightly regulated by canonical Wnt signaling, whereas patency of the SAG suture is achieved by constantly activated canonical Wnt signaling. Importantly, the fate of PF and SAG sutures can be reversed by manipulating Wnt signaling. Continuous activation of canonical Wnt signaling in the PF suture inhibits endochondral ossification and therefore, suture closure, In contrast, inhibition of canonical Wnt signaling in the SAG suture, upon treatment with Wnt antagonists results in endochondral ossification and suture closure. Thus, inhibition of canonical Wnt signaling in the SAG suture phenocopies craniosynostosis. Moreover, mice haploinsufficient for Twist1, a target gene of canonical Wnt signaling which inhibits chondrogenesis, have sagittal craniosynostosis. We propose that regulation of canonical Wnt signaling is of crucial importance during the physiological patterning of PF and SAG sutures. Importantly, dysregulation of this pathway may lead to craniosynostosis.  相似文献   

4.
Summary A 10-year-old girl with partial deletion of the short arm of chromosome 9 is reported; karyotype: 46,XX,del(9)(p22). This syndrome results in a distinctive craniofacial dysmorphism with trigonocephaly and contrasting midfacial hypoplasia. Partial monosomy 9p was the result of a paternal de novo germinal deletion in this case.  相似文献   

5.
Midfacial hypoplasia has been corrected by Le Fort III or monobloc forward advancement in one stage in syndromic craniosynostosis, but recently developed distraction osteogenesis has been in use. Whereas the amount of forward mobilization in Le Fort III conventional osteotomy is determined by the preplanned fabricated interdental splint, that in Le Fort III distraction is determined by the positions of the inferior orbital rim, malar complex, and nose. Therefore, the forward mobilization of the upper part of the midface may sometimes be insufficient when one focuses on the final occlusion, and the occlusion might not be satisfied when the forward mobilization is sufficient. Correction of the midfacial hypoplasia should be considered differently in the upper and lower portions of the midface. The upper portion contains the inferior orbit and nose, and the lower portion contains the occlusal structure of the maxillary dentoalveolar portion with the mandible. Separating the midface into two portions and conducting the distraction osteogenesis in both portions separately in different amounts and vectors of distraction is described in this article. Although distraction of the upper portion of the midface can be conducted in one direction with an internal device, distraction of the lower portion of the midface is preferred for conduction by a controllable device because of the need to obtain the preferred occlusion. To obtain better functional and aesthetic results in midfacial distraction in adults and adolescents with syndromic craniosynostosis, dual Le Fort III minus I and Le Fort I midfacial distraction osteogenesis was performed in four cases (in two patients with Crouzon syndrome and in two patients with Apert syndrome). Two females and two males are described (age range, 13 to 26 years). An internal device was used for the upper portion of the midface and an external device was used for the lower portion. The amount of distraction ranged from 14 to 21 mm in the upper portion of the midface and from 11 to 18 mm in the lower portion. No particular complications were noticed over a follow-up period of 10 to 38 months (average follow-up, 19.8 months).  相似文献   

6.
The notion of absence of the frontal sinuses in human individuals presenting a persistence of the metopic suture is considered as classical in many treatises of reference; however, precise studies are very rare and even controversial. The purpose of this study was thus to provide original data to confirm or refute this classical affirmation with the perspective of some original insights into biological significance of the frontal sinuses and the factors influencing their exceptional polymorphism. The material consisted of 143 dry skulls of adult individuals (European Homo sapiens), distributed in two groups: 80 skulls presenting a complete frontal closure with total disappearance of the metopic suture, and 63 skulls presenting a complete persistence of the metopic suture. Each skull was radiographed in oblique projection using the occipitomental view. A simple morphological quantification of the sinus size was defined with four categories: (1) aplasia, (2) hypoplasia, (3) medium size, (4) hyperplasia. Statistically significant difference in frontal sinusal size was found between both groups of skulls. Absent and small sinuses were considerably more frequent in skulls with persistence of the metopic suture (57.9 vs. 11.9%): small frontal sinuses (hypoplasia) were much more frequent (50.8 vs. 9.4%), although the frequency of absence of frontal sinuses (aplasia) was only slightly higher (7.1 vs. 2.5%). Am J Phys Anthropol 154:621–627, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Apert and Pfeiffer syndromes are hereditary forms of craniosynostosis characterized by midfacial hypoplasia and malformations of the limbs and skull. A serious consequence of midfacial hypoplasia in these syndromes is respiratory compromise due to airway obstruction. In this study, we have evaluated Fgfr1(P250R/+) and Fgfr2(S252W/+) mouse models of these human conditions to study the pathogenesis of midfacial hypoplasia. Our histologic and micro-CT evaluation revealed premature synostosis of the premaxillary-maxillary, nasal-frontal, and maxillary-palatine sutures of the face and dysplasia of the premaxilla, maxilla, and palatine bones. These midfacial abnormalities were detected in the absence of premature ossification of the cranial base at postnatal day 0. Our results indicate that midfacial hypoplasia is not secondary to premature cranial base ossification but rather primary synostosis of facial sutures. Birth Defects Research (Part A), 2011.  相似文献   

8.
9.
Basement membranes constitute architecturally complex extracellular matrix (ECM) protein networks of great structural and regulatory importance. Recently, a novel group of basement membrane proteins, Fras1 (Fraser syndrome protein (1) and the Fras1-related extracellular matrix proteins Frem1, Frem2 and Frem3, has emerged. They comprise components of the sublamina densa region and contribute to embryonic epithelial-mesenchymal integrity. Fras1/Frem share common polypeptide repetitive motifs with possible interactive and organizing functions. Mutations in genes encoding Fras1, Frem1 and Frem2 are causative for dermal-epidermal detachment in the plane of sublamina densa and have been identified in different classes of mouse bleb mutants, the murine model of human Fraser syndrome, the hallmark phenotypic characteristics of which are embryonic skin blistering, cryptophthalmos and renal agenesis. Indeed, defects in FRAS1 and FREM2 have been identified in Fraser syndrome patients. The phenotypic similarity of mouse bleb mutant strains can be attributed to the fact that Fras1, Frem1 and Frem2 have been experimentally shown to interact, forming a mutually stabilized protein complex, while Frem3, which has not yet been associated with any of the existing known mutations, operates in a more independent fashion. Fras1/Frem have been recently proposed to compensate for the activity of collagen VII, a major anchoring component of the sublamina densa, the levels of which rise only during late embryonic life. By focusing on the aforementioned data, in this review we will summarize the current knowledge about Fraser syndrome proteins and describe their contribution to basement membrane biology.  相似文献   

10.
BACKGROUND: Pfeiffer syndrome (PS; OMIM #101600) is an autosomal dominant disorder characterized by craniosynostosis, midface hypoplasia, broad thumbs, brachydactyly, broad great toes, and variable syndactyly. CASE: We report a case of PS (type 3) with tracheal and visceral involvement and sacrococcygeal eversion. The patient shows facial dysmorphism with macrocephaly, dolichocephaly, and trigonocephaly, and an asymmetric skull, bilateral and severe exophthalmia with shallow orbits and ocular hypertelorism, downslanting palpebral fissures, constant strabismus, short anterior cranial base, and midface hypoplasia. CONCLUSIONS: Molecular analysis of the FGFR2 gene in this patient revealed a point mutation (c.890G>C NM_000141). This mutation leads to the substitution of the residue tryptophan at position 290 to cysteine in the protein (p.Try290Cys). These data reinforce the hypothesis that the p.Trp290Cys mutation is more often associated with a severe and poor prognosis of PS. Furthermore they suggest that the presence of sacrococcygeal defects is not associated with any specific FGFR2 mutation.  相似文献   

11.
12.
The Fras1/Frem gene family encodes for structurally similar, developmentally regulated extracellular matrix proteins. Mutations in Fras1, Frem1 and Frem2 have been identified in different classes of mouse bleb mutants, while defects in the human orthologs FRAS1 and FREM2 are causative for Fraser syndrome. The hallmark phenotypic feature of bleb mice is embryonic skin blistering due to dermal-epidermal detachment. The similarity of the phenotypic characteristics among the bleb mouse mutants, together with the fact that Fras1/Frem proteins are co-localized in embryonic epithelial basement membranes, suggest that they operate in a common pathway. Here, we report for the first time the immunofluorescence pattern of Frem3 and provide a comparative analysis of the spatiotemporal localization of all Fras1/Frem proteins during mouse embryonic development. We demonstrate their overall co-localization in embryonic epithelial basement membranes, with emphasis on areas of phenotypic interest such as eyelids, limbs, kidneys, lungs and organs of the gastrointestinal tract and the central nervous system. We further studied collagen VII, impairment of which produces dystrophic epidermolysis bullosa, a postnatal skin blistering disorder. We show that basement membrane levels of collagen VII rise at late embryonic life, concomitant with descending Fras1/Frem immunolabeling.  相似文献   

13.
An autosomal-recessive syndrome of bifid nose and anorectal and renal anomalies (BNAR) was previously reported in a consanguineous Egyptian sibship. Here, we report the results of linkage analysis, on this family and on two other families with a similar phenotype, which identified a shared region of homozygosity on chromosome 9p22.2-p23. Candidate-gene analysis revealed homozygous frameshift and missense mutations in FREM1, which encodes an extracellular matrix component of basement membranes. In situ hybridization experiments demonstrated gene expression of Frem1 in the midline of E11.5 mouse embryos, in agreement with the observed cleft nose phenotype of our patients. FREM1 is part of a ternary complex that includes FRAS1 and FREM2, and mutations of the latter two genes have been reported to cause Fraser syndrome in mice and humans. The phenotypic variability previously reported for different Frem1 mouse mutants suggests that the apparently distinct phenotype of BNAR in humans may represent a previously unrecognized variant of Fraser syndrome.  相似文献   

14.
15.
The Fras1/Frem gene family encodes for structurally similar proteins of the extracellular matrix, functionally correlated with embryonic dermal-epidermal adhesion as deduced from the appearance of sub-epidermal blisters in mouse mutants compromising the function of Fras1, Frem1 and Frem2 proteins. Mutations in the human counterparts FRAS1 and FREM2 have been detected in patients suffering from Fraser syndrome. So far, Fras1/Frem proteins have been shown to be strictly colocalized in the sublamina densa of mouse epithelial basement membranes during development. Here, we focused on the characterization of the localization pattern of the aforementioned proteins, in various parts of the adult mouse skin as well as a range of organs and tissues. Frem3 was present in a broad range of epithelial basement membranes where Fras1, Frem1 and Frem2 were missing. The localization profile of Frem3 coincided with that of collagen VII in all skin basement membranes but differed in that Frem3 was additionally found in the basement membrane of several internal epithelia, where collagen VII was absent. Fras1 and Frem2 were colocalized with Frem3 in the basement membrane of certain skin parts, underlying the thin-layer, of rapidly proliferating keratinocytes, whereas Frem1 was detected only in the basement membrane of the tail. The localization pattern of Fras1 and Frem2 was indistinguishable, while both proteins along with Frem3 could be detected even in the absence of Frem1.  相似文献   

16.
Cranial suture development involves a complex interaction of genes and tissues derived from neural crest cells (NCC) and paraxial mesoderm. In mice, the posterior frontal (PF) suture closes during the first month of life while other sutures remain patent throughout the life of the animal. Given the unique NCC origin of PF suture complex (analogous to metopic suture in humans), we performed quantitative real-time PCR and immunohistochemistry to study the expression pattern of the NCC determinant gene Sox9 and select markers of extracellular matrix. Our results indicated a unique up-regulated expression of Sox9, a regulator of chondrogenesis, during initiation of PF suture closure, along with the expression of specific cartilage markers (Type II Collagen and Type X Collagen), as well as cartilage tissue formation in the PF suture. This process was followed by expression of bone markers (Type I Collagen and Osteocalcin), suggesting endochondral ossification. Moreover, we studied the effect of haploinsufficiency of the NCC determinant gene Sox9 in the NCC derived PF suture complex. A decrease in dosage of Sox9 by haploinsufficiency in NCC-derived tissues resulted in delayed PF suture closure. These results demonstrate a unique development of the PF suture complex and the role of Sox9 as an important contributor to timely and proper closure of the PF suture through endochondral ossification.  相似文献   

17.
Only the metopic suture normally fuses during early childhood; all other cranial sutures normally fuse much later in life. Despite this, metopic synostosis is one of the least common forms of craniosynostosis. The temporal sequence of normal physiologic metopic suture fusion remains undefined and controversial. Therefore, diagnosis of metopic synostosis on the basis of computed tomography images alone can prove misleading. The present study sought to determine the normal sequence of metopic suture fusion and characterize both endocranial and ectocranial suture morphology. An analysis of computed tomography scans of 76 trauma patients, ranging in age from 10 days to 18 months, provided normative craniofacial data that could be compared to similar data obtained from the preoperative computed tomography scans of 30 patients who had undergone surgical treatment for metopic synostosis. Metopic suture fusion was complete by 6 to 8 months in all nonsynostotic patients, with initiation of suture fusion evident as early as 3 months of age. Fusion was found to commence at the nasion, proceed superiorly in progressive fashion, and conclude at the anterior fontanelle. Although an endocranial ridge was not commonly seen in synostotic patients, an endocranial metopic notch was virtually diagnostic of premature suture fusion and was seen in 93 percent of synostotic patients. A metopic notch was not seen in any nonsynostotic patient. The morphologic and normative craniofacial data presented permit diagnosis of metopic synostosis based on computed tomography images obtained beyond the normal fusion period.  相似文献   

18.
Coordinated growth of the skull and brain are vital to normal human development. Craniosynostosis, the premature fusion of the calvarial bones of the skull, is a relatively common pediatric disease, occurring in 1 in 2500 births, and requires significant surgical management, especially in syndromic cases. Syndromic craniosynostosis is caused by a variety of genetic lesions, most commonly by activating mutations of FGFRs 1-3, and inactivating mutations of TWIST1. In a mouse model of TWIST1 haploinsufficiency, cell mixing between the neural crest-derived frontal bone and mesoderm-derived parietal bone accompanies coronal suture fusion during embryonic development. However, the relevance of lineage mixing in craniosynostosis induced by activating FGFR mutations is unknown. Here, we demonstrate a novel mechanism of suture fusion in the Apert Fgfr2(S252W) mouse model. Using Cre/lox recombination we simultaneously induce expression of Fgfr2(S252W) and β-galactosidase in either the neural crest or mesoderm of the skull. We show that mutation of the mesoderm alone is necessary and sufficient to cause craniosynostosis, while mutation of the neural crest is neither. The lineage border is not disrupted by aberrant cell migration during fusion. Instead, the suture mesenchyme itself remains intact and is induced to undergo osteogenesis. We eliminate postulated roles for dura mater or skull base changes in craniosynostosis. The viability of conditionally mutant mice also allows post-natal assessment of other aspects of Apert syndrome.  相似文献   

19.

Background

Craniosynostosis, the premature fusion of calvarial sutures, is a common craniofacial abnormality. Causative mutations in more than 10 genes have been identified, involving fibroblast growth factor, transforming growth factor beta, and Eph/ephrin signalling pathways. Mutations affect each human calvarial suture (coronal, sagittal, metopic, and lambdoid) differently, suggesting different gene expression patterns exist in each human suture. To better understand the molecular control of human suture morphogenesis we used microarray analysis to identify genes differentially expressed during suture fusion in children with craniosynostosis. Expression differences were also analysed between each unfused suture type, between sutures from syndromic and non-syndromic craniosynostosis patients, and between unfused sutures from individuals with and without craniosynostosis.

Results

We identified genes with increased expression in unfused sutures compared to fusing/fused sutures that may be pivotal to the maintenance of suture patency or in controlling early osteoblast differentiation (i.e. RBP4, GPC3, C1QTNF3, IL11RA, PTN, POSTN). In addition, we have identified genes with increased expression in fusing/fused suture tissue that we suggest could have a role in premature suture fusion (i.e. WIF1, ANXA3, CYFIP2). Proteins of two of these genes, glypican 3 and retinol binding protein 4, were investigated by immunohistochemistry and localised to the suture mesenchyme and osteogenic fronts of developing human calvaria, respectively, suggesting novel roles for these proteins in the maintenance of suture patency or in controlling early osteoblast differentiation. We show that there is limited difference in whole genome expression between sutures isolated from patients with syndromic and non-syndromic craniosynostosis and confirmed this by quantitative RT-PCR. Furthermore, distinct expression profiles for each unfused suture type were noted, with the metopic suture being most disparate. Finally, although calvarial bones are generally thought to grow without a cartilage precursor, we show histologically and by identification of cartilage-specific gene expression that cartilage may be involved in the morphogenesis of lambdoid and posterior sagittal sutures.

Conclusion

This study has provided further insight into the complex signalling network which controls human calvarial suture morphogenesis and craniosynostosis. Identified genes are candidates for targeted therapeutic development and to screen for craniosynostosis-causing mutations.  相似文献   

20.
Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease''s aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号