首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidemiological and molecular data support the hypothesis that cancer results from a series of acquired somatic mutations. Discovering the initial mutations required for oncogenesis has long been a goal of cancer research. To date, the majority of causative mutations have been identified based on their ability to act in a dominant fashion and/or because they are activated by chromosomal translocations. Forward genetic screens are necessary for unbiased discovery of the remaining unknown oncogenic mutations. Two recent projects have demonstrated the feasibility of using the Sleeping Beauty transposon as an insertional mutagen for cancer gene discovery. In this article we discuss the history of cancer gene discovery and propose novel forward genetic screens using Sleeping Beauty transposon aimed at specific tissues and accelerating the discovery of recessive tumor suppressor genes.  相似文献   

2.
The use of Sleeping Beauty transposons as somatic mutagens to discover cancer genes in hematopoietic tumors and sarcomas has been documented. Here, we discuss the future of Sleeping Beauty for cancer genetic studies and the potential use of additional transposable elements for somatic mutagenesis.  相似文献   

3.
Large-scale sequencing of human cancer genomes and mouse transposon-induced tumors has identified a vast number of genes mutated in different cancers. One of the outstanding challenges in this field is to determine which genes, when mutated, contribute to cellular transformation and tumor progression. To identify new and conserved genes that drive tumorigenesis we have developed a novel cancer model in a distantly related vertebrate species, the zebrafish, Danio rerio. The Sleeping Beauty (SB) T2/Onc transposon system was adapted for somatic mutagenesis in zebrafish. The carp ß-actin promoter was cloned into T2/Onc to create T2/OncZ. Two transgenic zebrafish lines that contain large concatemers of T2/OncZ were isolated by injection of linear DNA into the zebrafish embryo. The T2/OncZ transposons were mobilized throughout the zebrafish genome from the transgene array by injecting SB11 transposase RNA at the 1-cell stage. Alternatively, the T2/OncZ zebrafish were crossed to a transgenic line that constitutively expresses SB11 transposase. T2/OncZ transposon integration sites were cloned by ligation-mediated PCR and sequenced on a Genome Analyzer II. Between 700–6800 unique integration events in individual fish were mapped to the zebrafish genome. The data show that introduction of transposase by transgene expression or RNA injection results in an even distribution of transposon re-integration events across the zebrafish genome. SB11 mRNA injection resulted in neoplasms in 10% of adult fish at ∼10 months of age. T2/OncZ-induced zebrafish tumors contain many mutated genes in common with human and mouse cancer genes. These analyses validate our mutagenesis approach and provide additional support for the involvement of these genes in human cancers. The zebrafish T2/OncZ cancer model will be useful for identifying novel and conserved genetic drivers of human cancers.  相似文献   

4.
To successfully treat cancer we will likely need a much more detailed understanding of the genes and pathways meaningfully altered in individual cancer cases. One method for achieving this goal is to derive cancers in model organisms using unbiased forward genetic screens that allow cancer gene candidate discovery. We have developed a method using a “cut-and-paste” DNA transposon system called Sleeping Beauty (SB) to perform forward genetic screens for cancer genes in mice. Although the approach is conceptually similar to the use of replication competent retroviruses for cancer gene identification, the SB system promises to allow such screens in tissues previously not amenable to forward genetic screens such as the gastrointestinal tract, brain, and liver. This article describes the strains useful for SB-based screens for cancer genes in mice and how they are deployed in an experiment.  相似文献   

5.
6.
The use of mutant mice plays a pivotal role in determining the function of genes, and the recently reported germ line transposition of the Sleeping Beauty (SB) transposon would provide a novel system to facilitate this approach. In this study, we characterized SB transposition in the mouse germ line and assessed its potential for generating mutant mice. Transposition sites not only were clustered within 3 Mb near the donor site but also were widely distributed outside this cluster, indicating that the SB transposon can be utilized for both region-specific and genome-wide mutagenesis. The complexity of transposition sites in the germ line was high enough for large-scale generation of mutant mice. Based on these initial results, we conducted germ line mutagenesis by using a gene trap scheme, and the use of a green fluorescent protein reporter made it possible to select for mutant mice rapidly and noninvasively. Interestingly, mice with mutations in the same gene, each with a different insertion site, were obtained by local transposition events, demonstrating the feasibility of the SB transposon system for region-specific mutagenesis. Our results indicate that the SB transposon system has unique features that complement other mutagenesis approaches.  相似文献   

7.
目的:建立精子特异性表达Sleeping Beauty ( SB)转座酶转基因小鼠模型,为研究SB转座子在小鼠中的应用提供工具。方法克隆精子特异性启动子用以驱动SB转座酶基因的表达,建立精子特异性表达SB转座酶的载体,利用显微注射方法建立以C57BL/6J为背景的精子特异性表达SB转座酶的转基因小鼠。 PCR鉴定首建鼠的基因型,western blot(WB)和免疫组织化学(IHC)检测SB转座酶基因在小鼠生殖腺睾丸中的表达情况,筛选睾丸中高表达SB转座酶的转基因小鼠。结果显微注射方式获得了5只首建小鼠,其中3只能稳定传代,利用WB和IHC成功的筛选出一株在精子中高表达SB转座酶的转基因小鼠。结论成功建立了精子特异性高表达SB转座酶转基因小鼠模型,为将SB转座子作为一种基因工程工具应用于小鼠基因修饰模型的建立提供非常重要的工具资源。  相似文献   

8.
9.
“睡美人”转座系统研究进展   总被引:2,自引:0,他引:2  
“睡美人 (SleepingBeauty ,SB)”转座系统是Tc1/mariner转座因子超家族中的一员 ,是目前唯一取材于脊椎动物的具有活性的转座系统 .对近年来有关“睡美人”的研究进展作一个综述 ,并针对存在的问题提出相应的解决方案 .  相似文献   

10.
An urgent need exists to test the contribution of new genes to the pathogenesis and progression of human glioblastomas (GBM), the most common primary brain tumor in adults with dismal prognosis. New potential therapies are rapidly emerging from the bench and require systematic testing in experimental models which closely reproduce the salient features of the human disease. Herein we describe in detail a method to induce new models of GBM with transposon-mediated integration of plasmid DNA into cells of the subventricular zone of neonatal mice. We present a simple way to clone new transposons amenable for genomic integration using the Sleeping Beauty transposon system and illustrate how to monitor plasmid uptake and disease progression using bioluminescence, histology and immuno-histochemistry. We also describe a method to create new primary GBM cell lines. Ideally, this report will allow further dissemination of the Sleeping Beauty transposon system among brain tumor researchers, leading to an in depth understanding of GBM pathogenesis and progression and to the timely design and testing of effective therapies for patients.  相似文献   

11.
Somatic transposon mutagenesis in mice is an efficient strategy to investigate the genetic mechanisms of tumorigenesis. The identification of tumor driving transposon insertions traditionally requires the generation of large tumor cohorts to obtain information about common insertion sites. Tumor driving insertions are also characterized by their clonal expansion in tumor tissue, a phenomenon that is facilitated by the slow and evolving transformation process of transposon mutagenesis. We describe here an improved approach for the detection of tumor driving insertions that assesses the clonal expansion of insertions by quantifying the relative proportion of sequence reads obtained in individual tumors. To this end, we have developed a protocol for insertion site sequencing that utilizes acoustic shearing of tumor DNA and Illumina sequencing. We analyzed various solid tumors generated by PiggyBac mutagenesis and for each tumor >106 reads corresponding to >104 insertion sites were obtained. In each tumor, 9 to 25 insertions stood out by their enriched sequence read frequencies when compared to frequencies obtained from tail DNA controls. These enriched insertions are potential clonally expanded tumor driving insertions, and thus identify candidate cancer genes. The candidate cancer genes of our study comprised many established cancer genes, but also novel candidate genes such as Mastermind-like1 (Mamld1) and Diacylglycerolkinase delta (Dgkd). We show that clonal expansion analysis by high-throughput sequencing is a robust approach for the identification of candidate cancer genes in insertional mutagenesis screens on the level of individual tumors.  相似文献   

12.
Transposons are one means that nature has used to introduce new genetic material into chromosomes of organisms from every kingdom. They have been extensively used in prokaryotic and lower eukaryotic systems, but until recently there was no transposon that had significant activity in vertebrates. The Sleeping Beauty (SB) transposon system was developed to direct the integration of precise DNA sequences into chromosomes. The SB system was derived from salmonid sequences that had been inactive for more than 10 million years. SB transposons have been used for two principle uses – as a vector for transgenesis and as a method for introducing various trap vectors into (gene-trap) or in the neighborhood of (enhancer-trap) genes to identify their functions. Results of these studies show that SB-mediated transgenesis is more efficient than that by injection of simple plasmids and that expression of transgenesis is stable and reliable following passage through the germline.  相似文献   

13.
Transposon mutagenesis of the mouse germline   总被引:11,自引:0,他引:11  
  相似文献   

14.
DNA转座子作为一种遗传学工具对脊椎动物的转基因、突变体产生、癌基因发现和基因治疗方面都有巨大的贡献. 目前,哺乳动物中应用最为广泛、活性最高的DNA转座子为重构于鲑鱼的Sleeping Beauty (SB)转座子和来源于甘蓝蠖度尺蛾 (cabbage looper moth Trichoplusia ni)的PiggyBac (PB)转座子. 本研究中,我们成功构建了包含PB和SB两种转座子的杂合转座载体,命名为PBSBD. 在杂合转座载体中融入了基因捕获框及loxp/Frt元件,用以实现转座过程中的基因捕获和条件性敲除. 在HepG2细胞中通过检测报告基因的表达情况及阳性克隆的定位,对构建的杂合转座载体PBSBD进行了活性的初步验证. 结果表明,PBSBD能够有效被2种转座酶识别,并能检测到报告基因的表达. 本研究所构建的杂合转座载体PBSBD结合2种转座酶,可以应用于大规模筛选突变基因和研究基因功能. 并且该杂合转座载体还可以利用SB转座酶的邻近转座特性,结合载体内所包含的loxp/Frt元件用以邻近区域DNA片段的条件性敲除,研究大片段DNA在生物体中的作用.  相似文献   

15.
DNA转座子作为一种遗传工程工具已广泛应用于多物种的转基因及产生插入突变等研究。目前,在哺乳动物中有转座活性的转座子可分为三类:1)hAT样转座子;2)Tcl样转座子包括Sleeping Beauty和FrogPrince;3)PiggyBac转座子家族。其中甘蓝蠖度尺蛾(Cabbage looper moth Trichoplusia ni)来源的PiggyBac转座子是目前在哺乳动物中活性最高的转座子,并且可以携带十几kb的外源基因转座而不影响其效率,使其在哺乳动物的转基因、癌基因的发现、基因治疗研究方面具有巨大的应用潜力。此外,PB的无痕迹转座对于无转基因、无遗传物质改变的诱导多潜能干细胞(iPS)研究也具有非常重要的意义。本文主要对针对PB在哺乳动物中的应用现状及前景作一介绍。  相似文献   

16.
The N-terminal domain of the Sleeping Beauty (SB) transposase mediates transposon DNA binding, subunit multimerization, and nuclear translocation in vertebrate cells. For this report, we studied the relative contributions of 95 different residues within this multifunctional domain by large-scale mutational analysis. We found that each of four amino acids (leucine 25, arginine 36, isoleucine 42, and glycine 59) contributes to DNA binding in the context of the N-terminal 123 amino acids of SB transposase, as indicated by electrophoretic mobility shift analysis, and to functional activity of the full-length transposase, as determined by a quantitative HeLa cell-based transposition assay. Moreover, we show that amino acid substitutions within either the putative oligomerization domain (L11A, L18A, L25A, and L32A) or the nuclear localization signal (K104A and R105A) severely impair its ability to mediate DNA transposition in mammalian cells. In contrast, each of 10 single amino acid changes within the bipartite DNA-binding domain is shown to greatly enhance SB's transpositional activity in mammalian cells. These hyperactive mutations functioned synergistically when combined and are shown to significantly improve transposase affinity for transposon end sequences. Finally, we show that enhanced DNA-binding activity results in improved cleavage kinetics, increased SB element mobilization from host cell chromosomes, and dramatically improved gene transfer capabilities of SB in vivo in mice. These studies provide important insights into vertebrate transposon biology and indicate that Sleeping Beauty can be readily improved for enhanced genetic research applications in mammals.  相似文献   

17.
The genetic profile of human pancreatic cancers harbors considerable heterogeneity, which suggests a possible explanation for the pronounced inefficacy of single therapies in this disease. This observation has led to a belief that custom therapies based on individual tumor profiles are necessary to more effectively treat pancreatic cancer. It has recently been discovered that axon guidance genes are affected by somatic structural variants in up to 25% of human pancreatic cancers. Thus far, however, some of these mutations have only been correlated to survival probability and no function has been assigned to these observed axon guidance gene mutations in pancreatic cancer. In this study we established three novel pancreatic cancer cell lines and performed whole genome sequencing to discover novel mutations in axon guidance genes that may contribute to the cancer phenotype of these cells. We discovered, among other novel somatic variants in axon guidance pathway genes, a novel mutation in the PLXNA1 receptor (c.2587G>A) in newly established cell line SB.06 that mediates oncogenic cues of increased invasion and proliferation in SB.06 cells and increased invasion in 293T cells upon stimulation with the receptor’s natural ligand semaphorin 3A compared to wild type PLXNA1 cells. Mutant PLXNA1 signaling was associated with increased Rho-GTPase and p42/p44 MAPK signaling activity and cytoskeletal expansion, but not changes in E-cadherin, vimentin, or metalloproteinase 9 expression levels. Pharmacologic inhibition of the Rho-GTPase family member CDC42 selectively abrogated PLXNA1 c.2587G>A-mediated increased invasion. These findings provide in-vitro confirmation that somatic mutations in axon guidance genes can provide oncogenic gain-of-function signals and may contribute to pancreatic cancer progression.  相似文献   

18.
19.
"睡美人"转座子的研究进展   总被引:1,自引:0,他引:1  
谢飞  高波  宋成义  陈国宏 《遗传》2007,29(7):785-792
“睡美人( Sleeping Beauty, SB) ”转座系统是Tc1/mariner 转座子超家族中的一员,已经失活了一千多万年。1997年,Ivics 等根据积累的系统发生数据,利用生物信息学的方法, 对其进行分子重建, 终于唤醒了其转座活性。近年来对“睡美人”转座系统的转座效率和转座机理进行的研究,已证明SB转座子在基因筛选,转基因及基因治疗等领域具有广阔的应用前景。文章重点论述了SB转座子在结构及其优化、转座机制和应用等方面的进展,同时对其研究中出现的各种问题进行了总结并提出了一些解决方案。  相似文献   

20.
转座子Sleeping Beauty和PiggyBac   总被引:2,自引:0,他引:2  
近10年来,得益于转座子Sleeping Beauty(SB)和PiggyBac(PB)的发现和完善,转座子作为一种遗传工程工具在脊椎动物的基因遗传研究中得到广泛应用.SB和PB宿主范围极其广泛,从单细胞生物到哺乳动物都能够发挥作用.转座过程需要转座序列和转座酶的存在,类似于"剪切"、"粘贴"的方式.转座子载体系统转座时可携带一段外源DNA序列,利用这一特性可以用于实现目的基因的转移,现已广泛用于转基因动物、基因功能研究、基因治疗等领域.当转座系统与基因捕获技术相结合,不仅可研究插入突变基因的功能,还能通过所携带的报告基因获得捕获基因的表达图谱.作为非病毒载体的SB和PB转座系统,由于具有高容量、高效率和高安全性等优势,并且PB在转座后不留任何足迹,不会造成遗传物质的不可预测改变,在动物基因工程以及基因治疗方面具有诱人的前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号