首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an efficient neurosurgical treatment for advanced Parkinson's disease. Non‐invasive metabolic neuroimaging during the course of DBS in animal models may contribute to our understanding of its action mechanisms. Here, DBS was adapted to in vivo proton magnetic resonance spectroscopy at 11.7 T in the rat to follow metabolic changes in main basal ganglia structures, the striatum, and the substantia nigra pars reticulata (SNr). Measurements were repeated OFF and ON acute and subchronic (7 days) STN‐DBS in control and parkinsonian (6‐hydroxydopamine lesion) conditions. Acute DBS reversed the increases in glutamate, glutamine, and GABA levels induced by the dopamine lesion in the striatum but not in the SNr. Subchronic DBS normalized GABA in both the striatum and SNr, and glutamate in the striatum. Taurine levels were markedly decreased under subchronic DBS in the striatum and SNr in both lesioned and unlesioned rats. Microdialysis in the striatum further showed that extracellular taurine was increased. These data reveal that STN‐DBS has duration‐dependent metabolic effects in the basal ganglia, consistent with development of adaptive mechanisms. In addition to counteracting defects induced by the dopamine lesion, prolonged DBS has proper effects independent of the pathological condition.

  相似文献   


2.
Stuttering is a speech disorder with disruption of verbal fluency which is occasionally present in patients with Parkinson's disease (PD). Long-term medical management of PD is frequently complicated by fluctuating motor functions and dyskinesias. High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment of motor fluctuations and is the most common surgical procedure in PD. Here we report the re-occurrence and aggravation of stuttering following STN-DBS in two male patients treated for advanced PD. In both patients the speech fluency improved considerably when the neurostimulator was turned off, indicating that stuttering aggravation was related to neurostimulation of the STN itself, its afferent or efferent projections and/or to structures localized in the immediate proximity. This report supports previous studies demonstrating that lesions of the basal ganglia-thalamocortical motor circuit, including the STN, is involved in the development of stuttering. In advanced PD STN-DBS is generally an effective and safe treatment. However, patients with PD and stuttering should be informed about the risk of aggravated symptoms following surgical therapy.  相似文献   

3.
4.
Based on a classical model of the basal ganglia thalamocortical network, in this paper, we employed a type of the deep brain stimulus voltage on the subthalamic nucleus to study the control mechanism of absence epilepsy seizures. We found that the seizure can be well controlled by turning the period and the duration of current stimulation into suitable ranges. It is the very interesting bidirectional periodic adjustment phenomenon. These parameters are easily regulated in clinical practice, therefore, the results obtained in this paper may further help us to understand the treatment mechanism of the epilepsy seizure.  相似文献   

5.
脑深部电刺激(deep brain stimulation,DBS)是近20年来神经外科领域发展最迅猛的技术。DBS是通过刺激发生器发出的高频电脉冲信号刺激脑神经核团或神经传导束来调节异常的神经环路。DBS已经成为治疗特发性震颤、帕金森病、肌张力障碍等运动障碍病的常规手术方法。自1997年深部脑刺激通过美国FDA认证用于治疗特发性震颤以来,已有超过数万名运动障碍患者接受该疗法,而国内脑深部电刺激最早在1999年应用于帕金森病临床治疗,迄今也有数千例患者接受了植入手术。近年,脑起搏器的临床适应症不断扩大,从最初的运动障碍病逐渐发展到治疗其他神经和精神疾病,如抽动秽语综合征、强迫症、抑郁症、神经性厌食症、难治性疼痛、癫痫、植物状态和阿尔茨海默病等,虽然DBS的治疗机理还不很清楚,但可以预见未来DBS将成为众多神经和精神疾病的重要治疗方法。  相似文献   

6.
Deep brain stimulation (DBS) has shown remarkable therapeutic benefits for patients with otherwise treatment-resistant movement and affective disorders. This technique is not only clinically useful, but it can also provide new insights into fundamental brain functions through direct manipulation of both local and distributed brain networks in many different species. In particular, DBS can be used in conjunction with non-invasive neuroimaging methods such as magnetoencephalography to map the fundamental mechanisms of normal and abnormal oscillatory synchronization that underlie human brain function. The precise mechanisms of action for DBS remain uncertain, but here we give an up-to-date overview of the principles of DBS, its neural mechanisms and its potential future applications.  相似文献   

7.
8.
Deep brain stimulation of the subthalamic nucleus (DBS STN) is an effective treatment method in advanced Parkinson's disease (PD) providing marked improvement of its major motor symptoms. In addition, non-motor effects have been reported including weight gain in PD patients after DBS STN. Using retrospective survey, we aimed to evaluate weight changes in our patients with advanced PD treated with DBS STN. We inquired 25 PD patients (16 men, 9 women), of mean age 55 (42-65) years, mean PD duration 15 (9-21) years, who previously received bilateral DBS STN. We obtained valid data from 23 patients. In the first survey, 1 to 45 months after DBS, weight gain was found in all patients comparing to pre-DBS period. The mean increase was 9.4 kg (from 1 to 25 kg). The patients' mean body mass index (BMI) increased from 23.7 to 27.0 kg/m2, i.e. by 3.3 kg/m2 (+2 to +6.1 kg/m2). In the repeated survey one year later, in 12 of the patients body weight moderately decreased, 3 did not change, and 6 patients further increased their weight. Possible explanations of body weight gain after DBS STN include a reduction of energy output related to elimination of dyskinesias, improved alimentation or direct influence on function of lateral hypothalamus by DBS STN.  相似文献   

9.
为了探求高频电刺激对受刺激核团的影响,在高频刺激丘脑底核的同时,同步记录了大鼠丘脑底核神经元活动.针对同步记录中刺激伪迹的难题,研究并应用了高效的刺激伪迹滤出算法,恢复了被掩盖的神经响应,且失真小.研究了刺激幅度、频率与神经元神经响应类型的关系,以及在临床治疗有效刺激参数下,高频刺激对神经元平均放电率的影响.研究结果显示,放电率的变化可能与帕金森症病理状态无直接关系,爆发式放电增多更可能是帕金森发病潜在的电生理基础,而受刺激核团的自发放电的抑制、放电率的降低及爆发式放电的减少则有可能是深部脑刺激作用机制的一部分.  相似文献   

10.
11.
Visual processing is not determined solely by retinal inputs. Attentional modulation can arise when the internal attentional state (current task) of the observer alters visual processing of the same stimuli. This can influence visual cortex, boosting neural responses to an attended stimulus. Emotional modulation can also arise, when affective properties (emotional significance) of stimuli, rather than their strictly visual properties, influence processing. This too can boost responses in visual cortex, as for fear-associated stimuli. Both attentional and emotional modulation of visual processing may reflect distant influences upon visual cortex, exerted by brain structures outside the visual system per se. Hence, these modulations may provide windows onto causal interactions between distant but interconnected brain regions. We review recent evidence, noting both similarities and differences between attentional and emotional modulation. Both can affect visual cortex, but can reflect influences from different regions, such as fronto-parietal circuits versus the amygdala. Recent work on this has developed new approaches for studying causal influences between human brain regions that may be useful in other cognitive domains. The new methods include application of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) measures in brain-damaged patients to study distant functional impacts of their focal lesions, and use of transcranial magnetic stimulation concurrently with fMRI or EEG in the normal brain. Cognitive neuroscience is now moving beyond considering the putative functions of particular brain regions, as if each operated in isolation, to consider, instead, how distinct brain regions (such as visual cortex, parietal or frontal regions, or amygdala) may mutually influence each other in a causal manner.  相似文献   

12.
Deep brain stimulation (DBS) is a standard neurosurgical procedure used to treat motor symptoms in about 5% of patients with Parkinson's disease (PD). Despite the indisputable success of this procedure, the biological mechanisms underlying the clinical benefits of DBS have not yet been fully elucidated. The paper starts with a brief review on the use of DBS to treat PD symptoms. The second section introduces a computational model based on the population density approach and the Izhikevich neuron model. We explain why this model is appropriate for investigating macroscopic network effects and exploring the physiological mechanisms which respond to this treatment strategy (i.e., DBS). Finally, we present new insights into the ways this computational model may help to elucidate the dynamic network effects produced in a cerebral structure when DBS is applied.  相似文献   

13.
14.
This study examines the effect of progressive isocapnic CO hypoxemia on respiratory afterdischarge and the phrenic neurogram response to supramaximal carotid sinus nerve (CSN) stimulation. Twelve anesthetized, vagotomized, peripherally chemodenervated, ventilated cats with blood pressure controlled were studied. During isocapnic hypoxemia, the amplitude of the phrenic neurogram was progressively depressed. In contrast, the increase in peak phrenic amplitude produced by CSN stimulation was unchanged, suggesting that the central respiratory response to CSN stimulation is unaffected by progressive hypoxemia. The time constant of respiratory afterdischarge (tau) was calculated from best-fit plots of phrenic amplitude vs. time after cessation of CSN stimulation. Under control conditions the value of tau was 57.7 +/- 3 (SE) s (n = 12). During progressive isocapnic hypoxemia, tau decreased as a linear function of arterial O2 content (CaO2) such that a 40% reduction of CaO2 resulted in a 48% reduction in tau. This reduction of respiratory afterdischarge may contribute to the genesis of periodic breathing during hypoxia.  相似文献   

15.
16.
Abstract

Introduction: Deep brain stimulation (DBS) is a standard surgical treatment method which is generally applied to subthalamic nucleus in Parkinson’s patients in cases where medical treatment is insufficient in treating the motor symptoms. It is known that Subthalamic Nucleus Deep Brain Stimulation (STN-DBS) treats many motor symptoms. However, the results of studies on speech and voice vary. The aim of the study is analysing the effect of STN-DBS on the characteristics of voice.

Materials/methods: A total of 12 patients, (8 male–4 female) with an age average of 58.8?±?9.6, who have been applied DBS surgery on STN included in the study. The voice recordings of the patients have been done prior to surgery and 6?months after the surgery. The evaluation of voice has been carried out through the instrumental method. The patients’ voice recordings of the /a,e,i/ vowels have been done. The obtained recordings were evaluated by the Praat programme and the effects on jhitter, shimmer, fundamental frequency (F0) and noise harmonic rate (NHR) were analysed.

Results: Numerical values of F0 of all female participants have been decreased for all of the vowels postoperatively. In the females; jhitter and fraction parameters were found to be significantly different (0.056 and 0.017, perspectively) for the vowel /e/. In addition, p values in the shimmer for vowels /e,i/ were thought to be clinically significant (.087, .079 and .076) respectively. All these changes in second measurements were found to indicate worsening vocal quality after the DBS in females. In males, there is not any significant difference observed between two measures in any of the parameters of any vowels.

Conclusions: Acoustic voice quality deteriorated after STN-DBS predominantly for females however this deterioration was not prominent audio-perceptually. This finding commented as a result of the fact that that voice quality deviance of the participants was not severe.  相似文献   

17.
Continuous high-frequency deep brain stimulation (DBS) is a widely used therapy for advanced Parkinson's disease (PD) management. However, the mechanisms underlying DBS effects remain enigmatic and are the subject of an ongoing debate. Here, we present and test a closed-loop stimulation strategy for PD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) primate model of PD. Application of pallidal closed-loop stimulation leads to dissociation between changes in basal ganglia (BG) discharge rates and patterns, providing insights into PD pathophysiology. Furthermore, cortico-pallidal closed-loop stimulation has a significantly greater effect on akinesia and on cortical and pallidal discharge patterns than standard open-loop DBS and matched control stimulation paradigms. Thus, closed-loop DBS paradigms, by modulating pathological oscillatory activity rather than the discharge rate of the BG-cortical networks, may afford more effective management of advanced PD. Such strategies have the potential to be effective in additional brain disorders in which a pathological neuronal discharge pattern can be recognized.  相似文献   

18.
Laura Y. Cabrera 《Bioethics》2019,33(9):1050-1058
The reporting of clinical trial data is necessary not only for doctors to determine treatment efficacy, but also to explore new questions without unnecessarily repeating trials, and to protect patients and the public from dangers when data are withheld. This issue is particularly salient in those trials involving invasive neurosurgical interventions, such as deep brain stimulation (DBS), for ‘treatment refractory’ psychiatric disorders. Using the federal database ClinicalTrials.gov, it was discovered that out of the completed or unknown‐status trials related to psychiatric DBS up to November 2018, only two had submitted results to ClinicalTrials.gov. These results suggest that, despite federal requirements to report clinical trial data, reporting on psychiatric DBS trials is problematically minimal. It is argued that a human rights approach to this problem establishes a legal and ethical foundation for the need to report clinical trial results in this area.  相似文献   

19.
Since the advent of modern neuroimaging techniques, studies have been carried out to examine nociceptive processing within the human brain non-invasively. Combined with advances in immunohistochemistry, histology and genetics, we have been able to correlate more objective measures of nociceptive processing with the subjective experience that is pain. The result has produced a dramatic shift in our thinking about the neural circuitry involved in nociceptive processing, revealing that pain is much more than a submodality of the sense of touch.  相似文献   

20.
 Based on a stochastic phase-resetting approach, three different double-pulse stimulation techniques are presented here which make it possible to effectively desynchronize a population of phase oscillators in the presence of noise. In the three sorts of double pulses the first, stronger pulse restarts the cluster independent of its initial dynamic state. The three methods differ with respect to the mechanism through which the second, weaker pulse desynchronizes the cluster. Both first and second pulses are delivered to the same site. Because of the oscillators' global couplings in the model under consideration, the incoherent state is unstable, so that after the desynchronization the cluster tends to resynchronize. However, resynchronization is effectively blocked by repeated administration of a double pulse. The experimental application of double-pulse stimulation is explained in detail. In particular, demand-controlled deep brain double-pulse stimulation is suggested for the therapy of patients suffering from Parkinson's disease or essential tremor. Received: 22 November 2000 / Accepted in revised form: 26 April 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号