首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Truffles are hypogeous ectomycorrhizal (EM) fungi belonging to the genus Tuber. Although outplanting of truffle-inoculated host plants has enabled the realization of productive orchards, truffle cultivation is not yet standardized. Therefore, monitoring the distribution of fungal species in different truffle fields may help us to elucidate the factors that shape microbial communities and influence the propagation and fruiting of Tuber spp. In this study, we compared the fungal biodiversity in cultivated and natural Tuber melanosporum truffle fields located in Central Italy. To this end, ectomycorrhizas (ECM) and soil samples were molecularly analyzed, and an inventory of the fungi associated with Quercus pubescens plants colonized by T. melanosporum, Tuber aestivum or Tuber brumale was compiled. T. melanosporum and T. aestivum were dominant on the cultivated plants, and the number of EM species was markedly lower in the cultivated sites than in the natural sites. However, in the same site, EM biodiversity was higher in T. brumale-colonized plants than in T. melanosporum-colonized plants. These results suggest that different Tuber spp. may have different competitive effects on the other mycobionts. Additionally, in keeping with our previous findings, we found that the number of T. melanosporum genotypes recovered from the soil samples was higher than that of the underlying ECM.  相似文献   

2.
Interactions between host tree species and ectomycorrhizal fungi are important in structuring ectomycorrhizal communities, but there are only a few studies on host influence of congeneric trees. We investigated ectomycorrhizal community assemblages on roots of deciduous Quercus crassifolia and evergreen Quercus laurina in a tropical montane cloud forest, one of the most endangered tropical forest ecosystems. Ectomycorrhizal fungi were identified by sequencing internal transcribed spacer and partial 28S rRNA gene. We sampled 80 soil cores and documented high ectomycorrhizal diversity with a total of 154 taxa. Canonical correspondence analysis indicated that oak host was significant in explaining some of the variation in ectomycorrhizal communities, despite the fact that the two Quercus species belong to the same red oak lineage (section Lobatae ). A Tuber species, found in 23% of the soil cores, was the most frequent taxon. Similar to oak-dominated ectomycorrhizal communities in temperate forests, Thelephoraceae, Russulaceae and Sebacinales were diverse and dominant.  相似文献   

3.
The fine root systems of three tropical montane forests differing in age and history were investigated in the Cordillera Talamanca, Costa Rica. We analyzed abundance, vertical distribution, and morphology of fine roots in an early successional forest (10–15 years old, ESF), a mid‐successional forest (40 years old, MSP), and a nearby undisturbed old‐growth forest (OGF), and related the root data to soil morphological and chemical parameters. The OGF stand contained a 19 cm deep organic layer on the forest floor (i.e., 530 mol C/m2), which was two and five times thicker than that of the MSF (10 cm) and ESF stands (4 cm), respectively. There was a corresponding decrease in fine root biomass in this horizon from 1128 g dry matter/m2 in the old‐growth forest to 337 (MSF) and 31 g/m2 (ESF) in the secondary forests, although the stands had similar leaf areas. The organic layer was a preferred substrate for fine root growth in the old‐growth forest as indicated by more than four times higher fine root densities (root mass per soil volume) than in the mineral topsoil (0–10 cm); in the two secondary forests, root densities in the organic layer were equal to or lower than in the mineral soil. Specific fine root surface areas and specific root tip abundance (tips per unit root dry mass) were significantly greater in the roots of the ESF than the MSF and OGF stands. Most roots of the ESF trees (8 abundant species) were infected by VA mycorrhizal fungi; ectomycorrhizal species (Quercus copeyemis and Q. costaricensis) were dominant in the MSF and OGF stands. Replacement of tropical montane oak forest by secondary forest in Costa Rica has resulted in (1) a large reduction of tree fine root biomass; (2) a substantial decrease in depth of the organic layer (and thus in preferred rooting space); and (3) a great loss of soil carbon and nutrients. Whether old–growth Quercus forests maintain a very high fine root biomass because their ectomycorrhizal rootlets are less effective in nutrient absorption than those of VA mycorrhizal secondary forests, or if their nutrient demand is much higher than that of secondary forests (despite a similar leaf area and leaf mass production), remains unclear.  相似文献   

4.
The establishment and subsequent impacts of invasive plant species often involve interactions or feedbacks with the below-ground subsystem. We compared the performance of planted tree seedlings and soil communities in three ectomycorrhizal tree species at Craigieburn, Canterbury, New Zealand – two invasive species (Pseudotsuga menziesii, Douglas-fir; Pinus contorta, lodgepole pine) and one native (Nothofagus solandri var. cliffortioides, mountain beech) – in monodominant stands. We studied mechanisms likely to affect growth and survival, i.e. nutrient competition, facilitation of carbon and nutrient transfer through mycorrhizal networks, and modification of light and soil conditions by canopy trees. Seedlings were planted in plastic tubes filled with local soil, and placed in monospecific stands. Effects of root competition from trees and mycorrhizal connections on seedling performance were tested by root trenching and use of tubes with or without a fine mesh (20 μm), allowing mycorrhizal hyphae (but not roots) to pass through. Survival and growth were highest in stands of Nothofagus and lowest under Pseudotsuga. Surprisingly, root trenching and mesh treatments had no effect on seedling performance, indicating canopy tree species affected seedling performance through reduced light availability and altered soil conditions rather than below-ground suppression from root competition or mycorrhizal facilitation. Seedlings in Pseudotsuga stands had lower mycorrhizal colonisation, likely as a result of the lower light levels. Soil organic matter levels, microbial biomass, and abundance and diversity of microbe-consuming nematodes were all highest under Nothofagus, and nematode community assemblages differed strongly between native and non-native stand types. The negative effects of non-native trees on nematodes relative to Nothofagus are likely due to the lower availability of soil organic matter and microbial biomass in these stands, and therefore lower availability of resources for nematodes. This study shows that established stands of non-native invasive tree species may adversely affect tree seedlings and soil communities through modifications of the microenvironment both above and below ground. As such, invasion and domination of new landscapes by these species is likely to result in fundamental shifts in community- and ecosystem-level properties relative to those under native forest cover.  相似文献   

5.
Peter M  Ayer F  Cudlín P  Egli S 《Mycorrhiza》2008,18(3):157-169
We investigated the ectomycorrhizal communities on the roots of adult trees and seedlings associated with three Norway spruce stands in the Czech Republic using morphological and molecular tools. The stands had different degrees of forest decline due to air pollution. The aims of the study were to obtain information about the belowground ectomycorrhizal community in a heavily damaged spruce forest and to assess whether missing ectomycorrhizal fungal partners could be one of the reasons for the observed lack of regeneration. The ectomycorrhizal species richness on the roots of adult trees was significantly lower in the heavily damaged site Mumlavska hora than in the other two, but less drastically so than that found in a fruitbody survey. The roots of adult trees and seedlings were fully mycorrhizal at this site although they were less species-rich. The most abundant ectomycorrhizal species on the root system of adult trees in all three forest stands was Tylospora fibrillosa, a member of the athelioid clade. It made up over 60% of root tips in Mumlavska hora and its proportion was at least twice that in the other two sites. This species was also an efficient colonizer of roots from seedlings, in particular, in the most damaged site. The different soil properties in this site may have caused the observed differences in the ectomycorrhizal species richness and composition. For example, cation exchange capacity and soil base saturation were lower and the soil more often saturated. However, the number of living trees and their defoliation status may well directly impact the ectomycorrhizal species composition by presumably affecting the amount of carbon delivered to the symbiotic fungal partners. Athelioids and thelephoroids are an important component of the belowground ectomycorrhizal community in most temperate and boreal forests, but the role they play might even be more crucial in stressed forest ecosystems. Based on our results, we suggest that factors other than missing ectomycorrhizal inoculum constrain natural regeneration in the heavily damaged site Mumlavska hora.  相似文献   

6.
We surveyed ectomycorrhizae, ectomycorrhizal fungal fruit bodies, and soil physical properties in one heavily damaged and two lightly damaged pine stands on Mt. Tsukuba, central Japan. The rate of ectomycorrhizal root tips was not different between heavily and lightly damaged pine stands. For ectomycorrhizae, Cenococcum geophilum had high relative abundance in the heavily damaged pine stand. The number of ectomycorrhizal fungal fruit bodies in the heavily damaged pine stand was much lower than that in the lightly damaged pine stands.  相似文献   

7.
The ecological, economic and social values of the ectomycorrhizal fungi of the black truffle found in the rural Mediterranean are well known. The inoculation of Pinus halepensis seedlings with mycorrhizal fungi and rhizobacteria can improve the morphology and physiology of the seedlings and benefit the regeneration of arid regions and the reintroduction of inocula of mycorrhizal fungi into these areas. Some rhizobacteria can improve the establishment and functioning of ectomycorrhizal symbiosis. In this study, seedlings of P. halepensis were inoculated with the mycorrhizal fungus Tuber melanosporum and the rhizobacteria Pseudomonas fluorescens CECT 844 under non-limiting greenhouse conditions. Five months after inoculation, we analysed the growth, water parameters (osmotic potential at saturation, osmotic potential at turgor loss and modulus of elasticity), concentrations of mycorrhizal colonies, nutrient concentration and nutrient contents (N, P, K, Ca, Mg and Fe) in roots and aerial parts of the seedlings. Subsequently, tests were performed to estimate the root growth potentials. None of the treatments changed the water parameters or growth potentials of the roots. The inoculations improved the growth and nutrient uptake of the seedlings, although the combination of P. fluorescens CECT 844 and T. melanosporum did not generally lead to a significant improvement over the positive effects of a simple inoculation of T. melanosporum; however, the addition of P. fluorescens CECT 844 did double the rate of the mycorrhization of T. melanosporum. These results may be promising for enhancing the cultivation of truffles.  相似文献   

8.
Plant–soil interactions are increasingly recognized to play a major role in terrestrial ecosystems functioning. However, few studies to date have focused on slow dynamic ecosystems such as forests. As they are vertically stratified by multiple vegetation strata, canopy tree removal by thinning operations could alter forest plant community through tree canopy opening. Very little is known about cascading effects on soil biodiversity. We conducted a large‐scale, multi‐site assessment of collembolan assemblage response to long‐term canopy tree removal in sessile oak Quercus petraea temperate forests. A total of 33 experimental plots were studied covering a large gradient of canopy tree basal area, stand age and local abiotic contexts. Collembolan abundance strongly declined with canopy tree removal in early forest successional stage and this was mediated by negative effect of understory plant community composition changes, i.e. shift from moss and forb to tree seedling, fern, shrub and grass species. Negative effect of this composition shift on collembolan species richness was largely offset by positive effect of the increase in understory plant species richness. This gives support to both the plant mass‐ratio and functional diversity hypotheses. Collembolan functional groups had contrasting response patterns, which were mediated by different ecological factors. Epedaphic (r‐strategist) abundance and species richness increased with canopy tree removal in relation with the increase in understory plant species richness. In contrast, euedaphic (K‐strategist) abundance and species richness declined with canopy tree removal in early forest successional stage in relation with changes in understory plant community composition and species richness, as well as microclimatic conditions. Overall, our study provides experimental evidence that forest plant community can be a strong driver of collembolan assemblages. It also emphasizes the role of trees as foundation species of forest ecosystems that can shape soil biodiversity through their regulation of understory plant community and ecosystem abiotic conditions.  相似文献   

9.
Lulli  Luciano  Bragato  Gilberto  Gardin  Lorenzo 《Plant and Soil》1999,214(1-2):85-92
An intensive survey was carried out on a 12-year-old experimental truffle bed of Tuber melanosporum Vitt. located in the central Apennines. The aim of the investigation was to relate the presence and carpophore production of T. melanosporum to changes in soil structure, aeration and fertility — expressed in terms of 0.25–2.00 mm aggregate fraction, total organic carbon, DTPA-extractable Mn and host plant height — and to determine if these modifications, whenever present, could be ascribed to soil differentiation within the truffle bed. The occurrence of pianelli — i.e. areas with little herbaceous ground cover created by T. melanosporum — showed a close relationship with host plant height and aeration of soil surface layers. Where pianelli occurred, the height of symbiont trees increased and the content of reduced Mn, indicating the presence of a well-aerated soil environment, decreased. The variation of host plant height was attributable not only to the increased absorption of nutrients related to the ectomycorrhizal partnership, but also to soil differentiation. The soils of the investigated area were characterized by a relatively low slope gradient, a rigid framework of gravel and a homogeneous physico-chemical behaviour, due to the predominance of Ca among exchangeable bases. In these environmental conditions, T. melanosporum was present in the rather thick soil belonging to Typic Rendolls, whereas it was absent in the area characterized by thin Lithic Rendolls. In the latter case, the plant cover was probably too scarce to protect T. melanosporum from summer dryness, and consequently the more resistant T. aestivum species prevailed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Understanding the factors underlying the distribution of biodiversity is a challenging issue in ecology. Here, we examined the distribution patterns of ectomycorrhizal fungal diversity across the soil profile in three Quercus ilex forests. Contact exploration type strongly dominated at all sites, but was most prevalent in the upper, organic-rich soil layers. At each site, three quarters of the ectomycorrhizal tips and 59 % of taxa were restricted to the ten first centimeters of the soil profile. The relative abundance of the dominant family Russulaceae increased with increasing soil depth. Species composition varied significantly among sites, with most species being rare. Species that occurred in only one of the three sites accounted for 78.9 % of all species, and 57.3 % of species were represented by a single ECM root tip. Our results suggest that (i) rare species at both local and regional scales contribute to the highly diverse fungal assemblages in Mediterranean forests and (ii) multi-sites studies including the whole soil profile are needed to provide comprehensive overviews of the taxonomic and functional diversities of ectomycorrhizal communities.  相似文献   

11.
The ecological consequences of homogenization remain relatively unexplored. One example of landscape-homogenizing is the establishment of plantations. We studied the effect of human-made forests by contrasting plant and small-mammal community composition between planted tree stands and adjacent natural habitat in two different Mediterranean habitats in Israel: (1) inland habitat where we focused on pine (Pinus halepensis) and carob (Ceratonia siliqua) stands, and (2) coastal sand dune habitat where we focused on planted acacia (Acacia saligna) stands. We first wanted to verify whether planted trees modify plant species composition, and second, if and how the small-mammal community is affected by the different habitat conditions created in plantations with different canopy cover. We were especially interested in the abundance of the commensal house mouse (Mus musculus). All tree stands underwent biotic homogenization indicated by abundance of house mice coupled with lower diversity of indigenous vegetation and small-mammal abundances and diversities. Habitat structural diversity was positively related with small-mammals diversity and was lower in artificial tree stands in both habitats. Our results suggest that using the abundance of commensal generalist species such as the house mouse relative to other more specialist small-mammals is a good approach to determine ecosystem integrity. Pre-commercial thinning treatment is a potential management tool to maintain a proportion of native tree species within the canopy of planted tree stands. However, until sufficient data is available for making generalizations, the exact level of thinning necessary to reverse the homogenization processes in man-made plantations and keeping indigenous small-mammal communities diverse and less prone to invasion must be determined empirically.  相似文献   

12.
In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species’ relative abundance and canopy trees’ health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.  相似文献   

13.
Two study plots, burned and control, were established in autumn 1998 in a Quercus ilex forest located in northern Spain, part of which had been affected by a low intensity fire in 1994. Soil samples for ectomycorrhizae (ECM) were taken over a 3-year period in each study plot in spring, summer, autumn and winter. ECM morphotypes were identified and the relative abundance of each morphotype in each soil sample calculated, along with species richness, Shannon diversity index and percentage of mycorrhization in each soil sample. The relative abundance of certain ECM morphotypes differed between burned and control plots, and the percentage of mycorrhizal tips was significantly lower in the burned than in the control plot. Nevertheless, there were no significant differences in the diversity, species richness or species composition of the ECM community in the burned and control plots. The dominant ECM morphotypes in both stands were Cenococcum geophilum and several thelephoroid fungi. Sphaerosporella brunnea and Pisolithus tinctorius thrived especially in the burned plot, whereas three ectomycorrhizal morphotypes assigned to the genus Hebeloma were especially abundant in the control plot. There was no significant variation in the relative abundance of the ECM morphotypes between seasons, but ECM community species richness was highest in autumn and lowest in summer. The percentage of mycorrhizal tips reached a maximum in winter, with its minimum in autumn. Collection of samples over the 3-year period also enabled us to detect a significant increase in percentage of ECM colonisation in the burned stand over time.  相似文献   

14.
Our objectives were (i) to develop a molecular method to detect mycelia of Tuber melanosporum (black truffle) in soil and (ii) to test for mycelial distribution around two truffle-bearing Quercus ilex trees in a truffle orchard. Isolation of total DNA from soil was performed, followed by PCR amplification with T. melanosporum-specific primers and restriction analysis. To address the detection sensitivity level, soil samples were inoculated with known amounts of gleba of T. melanosporum. The detection limit was >/=11.4 mug of hyphae g(-1) of soil. Mycelium was detected primarily within the area defined by the truffle burn and within the top 35 cm of the soil in all directions from the trees.  相似文献   

15.
S. Catovsky  F. A. Bazzaz 《Oikos》2002,98(3):403-420
To address the role of canopy‐seedling feedbacks in the structure and dynamics of mixed conifer broad‐leaved forests in the eastern US, we monitored seedling regeneration patterns and environmental conditions in the understorey of stands dominated by either hemlock (Tsuga canadensis) or red oak (Quercus rubra) for three years. Hemlock seedlings were favoured over other species’ seedlings in hemlock stands (a true positive feedback), due to a combination of high seed inputs, high seedling emergence and relatively high seedling survival during the growing season, which allowed hemlock to remain dominant under its own canopy. Red oak stands favoured a suite of mid‐successional broad‐leaved species over hemlock. A more even age structure of broad‐leaved species in red oak stands revealed that high seedling survival in such stands were driving this feedback. Canopy‐mediated variations in both understorey light availability (1.5% for hemlock vs 3.5% for red oak) and soil pH (3.9 for hemlock vs 4.4 for red oak) were found to be the primary correlates of stand‐level differences in seedling regeneration dynamics. In mixed temperate forests in the eastern US, canopy‐seedling feedbacks could act to slow successional trajectories and contribute to the maintenance of a stable landscape structure over many generations.  相似文献   

16.
Many factors associated with forests are collectively responsible for controlling ectomycorrhizal (ECM) fungal community structure, including plant species composition, forest structure, stand age, and soil nutrients. The objective of this study was to examine relationships among ECM fungal community measures, local soil nutrients, and stand age along a chronosequence of mixed forest stands that were similar in vegetation composition and site quality. Six combinations of age class (5-, 26-, 65-, and 100-year-old) and stand initiation type (wildfire and clearcut) were replicated on four sites, each representing critical seral stages of stand development in Interior Cedar-Hemlock (ICH) forests of southern British Columbia. We found significant relationships between ECM fungal diversity and both available and organic P; available P was also positively correlated with the abundance of two ECM taxa (Rhizopogon vinicolor group and Cenoccocum geophilum). By contrast, ECM fungal diversity varied unpredictably with total and mineralizable N or C to N ratio. We also found that soil C, N, available P, and forest floor depth did not exhibit strong patterns across stand ages. Overall, ECM fungal community structure was more strongly influenced by stand age than specific soil nutrients, but better correlations with soil nutrients may occur at broader spatial scales covering a wider range of site qualities.  相似文献   

17.
Abstract Variability between twelve isolates of the ectomycorrhizal fungus Tuber melanosporum was investigated using isoelectric focusing of four isozymes extracted from the fungal mycelium grown in pure culture. Two gene-enzyme systems were found to exhibit an intraspecific variation and resulted in the separation of isolates into several groups.  相似文献   

18.
Sarcodes sanguinea is a nonphotosynthetic mycoheterotrophic plant that obtains all of its fixed carbon from neighboring trees through a shared ectomycorrhizal fungus. We studied the spatial structuring of this tripartite symbiosis in a forest where Sarcodes is abundant, and its only fungal and photosynthetic plant associates are Rhizopogon ellenae and Abies magnifica, respectively. We found disproportionately high concentrations of Abies roots adjacent to Sarcodes roots compared to the surrounding soil. Rhizopogon ellenae colonizes the vast majority of those Abies roots (86-98%), and its abundance tends to decrease with increasing distance from Sarcodes plants. At 500 cm from Sarcodes plants we did not detect R. ellenae, and the ectomycorrhizal community instead was dominated by members of the Russulaceae and Thelephoraceae, which are commonly dominant in other California pinaceous forests. The highly clumped distribution of Abies-R. ellenae ectomycorrhizas indicates that Sarcodes plants either establish within pre-existing clumps, or they stimulate clump formation. Several lines of evidence favor the latter interpretation, suggesting an unexpected mutualistic aspect to the symbiosis. However, the mechanism involved remains unknown.  相似文献   

19.
Aims Theory predicts that the success of introduced species is related to the diversity of native species through trait-based processes. Abiotic site characteristics may also affect a site's susceptibility to invasion. We quantified resident plant species richness, phylogenetic diversity and several abiotic site characteristics for 24 oak forests in Minnesota, USA, to assess their impact on the abundance of a widespread, introduced terrestrial plant species, common buckthorn (Rhamnus cathartica L.). Specifically, we asked (1) whether resident species richness and phylogenetic diversity affected the abundance of R. cathartica and (2) what site characteristics explained the overall abundance of R. cathartica .Methods Our survey included 24 oak-dominated stands in Minnesota's deciduous forests. In each stand, we identified all species in 16 plots. We also measured a series of environmental site characteristics, including canopy openness (a proxy for light availability), percent bare soil, soil pH, percent sand, an index of propagule availability, duff layer thickness (a proxy for earthworm activity), an index of insolation and slope. For all species present in at least one site, we estimated a community phylogeny. We combined all site-level characteristics, including phylogenetic diversity of the resident plant species, in a multiple regression model to examine site level drivers of community invasibility.Important findings Results indicate that sites with higher overall plant phylogenetic diversity harbor less R. cathartica, even though native species richness was not significantly related to R. cathartica abundance. Regression analyses indicated that, in addition to resident species phylogenetic diversity, the most important predictors of R. cathartica abundance were canopy openness and the amount of bare soil, both positively related to the abundance of the invader. By combining the effects of abiotic site characteristics and resident species phylogenetic diversity in a model that predicted the abundance of R. cathartica, we were able to simultaneously account for a wide range of factors that might influence invasibility. Overall, our results suggest that management strategies aimed at reducing disturbances that lead to increased bare soil and light levels may be more successful if they also maximize phylogenetic diversity of the resident plant community.  相似文献   

20.
Resupinate thelephoroid fungi (hereafter called tomentelloid fungi) have a world-wide distribution and comprise approximately 70 basidiomycete species with inconspicuous, resupinate sporocarps. It is only recently that their ability to form ectomycorrhizas (EM) has been realized, so their distribution, abundance and significance as mycobionts in forest ecosystems is still largely unexplored. In order to provide baseline data for future ecological studies of tomentelloid fungi, we explored their presence and abundance in nine Swedish boreal forests in which the EM communities had been analysed. Phylogenetic analyses were used to compare the internal transcribed spacer of nuclear ribosomal DNA (ITS rDNA) sequence data obtained from mycobionts on single ectomycorrhizal tips with that obtained from sporocarps of identified tomentelloid fungi. Five species of Tomentella and one species of Pseudotomentella were identified as ectomycorrhizal fungi. The symbiotic nature of Tomentella bryophila, T. stuposa, T. badia and T. atramentaria is demonstrated for the first time. T. stuposa and Pseudotomentella tristis were the most commonly encountered tomentelloid fungi, with the other species, including T. sublilacina, only being recorded from single stands. Overall, tomentelloid fungi were found in five of the studies, colonizing between 1 and 8% of the mycorrhizal root tips. Two of the five sites supported several tomentelloid species. Tomentelloid fungi appear to be relatively common ectomycorrhizal symbionts with a wide distribution in Swedish coniferous forests. The results are in accordance with accumulating data that fungal species which lack conspicuous sporocarps may be of considerable importance in EM communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号