首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synechococcus sp. strains PCC 7942 and PCC 6301 contain a 35 kDa protein called IdiA (Iron deficiency induced protein A) that is expressed in elevated amounts under Fe deficiency and to a smaller extent also under Mn deficiency. Absence of this protein was shown to mainly damage Photosystem II. To decide whether IdiA has a function in optimizing and/or protecting preferentially either the donor or acceptor side reaction of Photosystem II, a comparative analysis was performed of Synechococcus sp. PCC 7942 wild-type, the IdiA-free mutant, the previously constructed PsbO-free Synechococcus PCC 7942 mutant and a newly constructed Synechococcus PCC 7942 double mutant lacking both PsbO and IdiA. Measurements of the chlorophyll fluorescence and determinations of Photosystem II activity using a variety of electron acceptors gave evidence that IdiA has its main function in protecting the acceptor side of Photosystem II. Especially, the use of dichlorobenzoquinone, preferentially accepting electrons from QA, gave a decreased O2 evolving activity in the IdiA-free mutant. Investigations of the influence of hydrogen peroxide treatment on cells revealed that this treatment caused a significantly higher damage of Photosystem II in the IdiA-free mutant than in wild-type. These results suggest that although the IdiA protein is not absolutely required for Photosystem II activity in Synechococcus PCC 7942, it does play an important role in protecting the acceptor side against oxidative damage. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
SANDOZ 9785, also known as BASF 13.338, is a pyridazinone derivative that inhibits Photosystem II (PS II) activity leading to an imbalance in the rate of electron transport through the photosystems. Synechococcus sp. strain PCC 7942 cells grown in the presence of sublethal concentration of SANDOZ 9785 (SAN 9785) for 48 hours exhibited a 20% decrease in Chl a per cell. However, no changes were observed in the content of phycocyanin per cell, the size of the phycobilisomes or in the PS II:PS I ratio. From an estimate of PS II electron transport rate under varying light intensities and spectral qualities and analysis of room temperature Chl a fluorescence induction, it was deduced that growth of Synechococcus PCC 7942 in the presence of SAN 9785 leads to a redistribution of excitation energy in favour of PS II. Though the redistribution appears to be primarily caused by changes affecting the Chl a antenna of PS II, the extent of energetic coupling between phycobilisomes and PS II is also enhanced in SAN 9785 grown Synechococcus PCC 7942 cells. There was a reduction in the effective size of PS I antenna based on measurement of P700 photooxidation kinetics. These results indicate that when PS II is partially inhibited, the structure of photosynthetic apparatus alters to redistribute the excitation energy in favour of PS II so that the efficiency of utilization of light energy by the two photosystems is optimized. Our results suggest that under the conditions used, drastic structural changes are not essential for redistribution of excitation energy between the photosystems.Abbreviations APC Allophycocyanin - Chl a chlorophyll a - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophyenyl)-1,1-dimethyl urea - DCIP 2,6-dichlorophenolindophenol - Fo fluorescence when all the reaction centres are open - fm fluorescence yield when all the reaction centres are closed - Fv variable chlorophyll fluorescence - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulphonic Acid - I50 concentration that causes 50% inhibition in activity - MV methyl viologen - pBQ para benzoquinone - PBS phycobilisome - PC phycocyanin - PS I, PS II Photosystem I, Photosystem II - P700 reaction centre Chl a of PS I - SAN 9785 SANDOZ 9785 i.e. 4-chloro-5-dimethylamino-2-phenyl-3 (2H) pyridazinone, also known as BASF 13.338  相似文献   

3.
In this minireview we discuss effects of excitation stress on the molecular organization and function of PS II as induced by high light or low temperature in the cyanobacterium Synechococcus sp. PCC 7942. Synechococcus displays PS II plasticity by transiently replacing the constitutive D1 form (D1:1) with another form (D1:2) upon exposure to excitation stress. The cells thereby counteract photoinhibition by increasing D1 turn over and modulating PS II function. A comparison between the cyanobacterium Synechococcus and plants shows that in cyanobacteria, with their large phycobilisomes, resistance to photoinhibition is mainly through the dynamic properties (D1 turnover and quenching) of the reaction centre. In contrast, plants use antenna quenching in the light-harvesting complex as an important means to protect the reaction center from excessive excitation.Abbreviations D1 reaction center protein of Photosystem II - P680 the reaction center of Photosystem II - QA the primary quinone acceptor of Photosystem II - TyrZ tyrosine electron donor to P680  相似文献   

4.
Synechococcus sp. PCC 7942 (Anacystis nidulans R2) contains two forms of the Photosystem II reaction centre protein D1, which differ in 25 of 360 amino acids. D1: 1 predominates under low light but is transiently replaced by D1:2 upon shifts to higher light. Mutant cells containing only D1:1 have lower photochemical energy capture efficiency and decreased resistance to photoinhibition, compared to cells containing D1:2. We show that when dark-adapted or under low to moderate light, cells with D1:1 have higher non-photochemical quenching of PS II fluorescence (higher qN) than do cells with D1:2. This is reflected in the 77 K chlorophyll emission spectra, with lower Photosystem II fluorescence at 697–698 nm in cells containing D1:1 than in cells with D1:2. This difference in quenching of Photosystem II fluorescence occurs upon excitation of both chlorophyll at 435 nm and phycobilisomes at 570 nm. Measurement of time-resolved room temperature fluorescence shows that Photosystem II fluorescence related to charge stabilization is quenched more rapidly in cells containing D1:1 than in those with D1:2. Cells containing D1:1 appear generally shifted towards State II, with PS II down-regulated, while cells with D1:2 tend towards State I. In these cyanobacteria electron transport away from PS II remains non-saturated even under photoinhibitory levels of light. Therefore, the higher activity of D1:2 Photosystem II centres may allow more rapid photochemical dissipation of excess energy into the electron transport chain. D1:1 confers capacity for extreme State II which may be of benefit under low and variable light.Abbreviations D1 the atrazine-binding 32 kDa protein of the PS II reaction centre core - D1:1 the D1 protein constitutively expressed during acclimated growth in Synechococcus sp. PCC 7942 - D1:2 an alternate form of the D1 protein induced under excess excitation in Synechococcus sp. PCC 7942 - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fo minimal fluorescence in the dark-adapted state - Fo minimal fluorescence in a light-adapted state - FM maximum fluorescence with all quenching mechanisms at a minimum, measured in presence of DCMU - FM maximal fluorescence in a light-adapted state, measured with a saturating flash - FMdark maximal fluorescence in the dark-adapted state - FV variable fluorescence in a light-adapted state (FM-Fo) - PAM pulse amplitude modulated fluorometer - qN non-photochemical quenching of PS II fluorescence - qN (dark) qN in the dark adapted state - qP photochemical quenching of fluorescence  相似文献   

5.
The previously constructed MSP (manganese stabilizing protein-psbO gene product)-free mutant of Synechococcus PCC7942 (Bockholt R, Masepohl B and Pistorius E K (1991) FEBS Lett 294: 59–63) and a newly constructed MSP-free mutant of Synechocystis PCC6803 were investigated with respect to the inactivation of the water-oxidizing enzyme during dark incubation. O2 evolution in the MSP-free mutant cells, when measured with a sequence of short saturating light flashes, was practically zero after an extended dark adaptation, while O2 evolution in the corresponding wild type cells remained nearly constant. It could be shown that this inactivation could be reversed by photoactivation. With isolated thylakoid membranes from the MSP-free mutant of PCC7942, it could be demonstrated that photoactivation required illumination in the presence of Mn2+ and Ca2+, while Cl addition was not required under our experimental conditions. Moreover, an extended analysis of the kinetic properties of the water-oxidizing enzyme (kinetics of the S3(S4)S0 transition, S-state distribution, deactivation kinetics) in wild type and mutant cells of Synechococcus PCC7942 and Synechocystis PCC6803 was performed, and the events possibly leading to the reversible inactivation of the water-oxidizing enzyme in the mutant cells are discussed. We could also show that the water-oxidizing enzyme in the MSP-free mutant cells is more sensitive to inhibition by added NH4Cl-suggesting that NH3 might be a physiological inhibitor of the water oxidizing enzyme in the absence of MSP.Abbreviations Chl chlorophyll - DCBQ 2,6-Dichloro-p-benzoquinone - MSP manganese stabilizing protein (psbO gene product) - PS II Photosystem II - WOE water oxidizing enzyme - WT wild type This paper is dedicated to Prof. Dr. Bernard Axelrod on the occasion of his 80th birthday  相似文献   

6.
Iron is an essential component in many protein complexes involved in photosynthesis, but environmental iron availability is often low as oxidized forms of iron are insoluble in water. To adjust to low environmental iron levels, cyanobacteria undergo numerous changes to balance their iron budget and mitigate the physiological effects of iron depletion. We investigated changes in key protein abundances and photophysiological parameters in the model cyanobacteria Synechococcus PCC 7942 and Synechocystis PCC 6803 over a 120 hour time course of iron deprivation. The iron stress induced protein (IsiA) accumulated to high levels within 48 h of the onset of iron deprivation, reaching a molar ratio of ∼42 IsiA : Photosystem I in Synechococcus PCC 7942 and ∼12 IsiA : Photosystem I in Synechocystis PCC 6803. Concomitantly the iron-rich complexes Cytochrome b6f and Photosystem I declined in abundance, leading to a decrease in the Photosystem I : Photosystem II ratio. Chlorophyll fluorescence analyses showed a drop in electron transport per Photosystem II in Synechococcus, but not in Synechocystis after iron depletion. We found no evidence that the accumulated IsiA contributes to light capture by Photosystem II complexes.  相似文献   

7.
Sarah Joshua 《BBA》2005,1709(1):58-68
State transitions in cyanobacteria are a physiological adaptation mechanism that changes the interaction of the phycobilisomes with the Photosystem I and Photosystem II core complexes. A random mutagenesis study in the cyanobacterium Synechocystis sp. PCC6803 identified a gene named rpaC which appeared to be specifically required for state transitions. rpaC is a conserved cyanobacterial gene which was tentatively suggested to code for a novel signal transduction factor. The predicted gene product is a 9-kDa integral membrane protein. We have further examined the role of rpaC by overexpressing the gene in Synechocystis 6803 and by inactivating the ortholog in a second cyanobacterium, Synechococcus sp. PCC7942. Unlike the Synechocystis 6803 null mutant, the Synechococcus 7942 null mutant is unable to segregate, indicating that the gene is essential for cell viability in this cyanobacterium. The Synechocystis 6803 overexpressor is also unable to segregate, indicating that the cells can only tolerate a limited gene copy number. The non-segregated Synechococcus 7942 mutant can perform state transitions but shows a perturbed phycobilisome-Photosystem II interaction. Based on these results, we propose that the rpaC gene product controls the stability of the phycobilisome-Photosystem II supercomplex, and is probably a structural component of the complex.  相似文献   

8.
9.
The heat shock response of three cyanobacterial strains,Anabaena sp. Strain PCC (paris Culture Collection) 7120,Plectonema boryanum Strain PCC 6306, andSynechococcus sp. Strain PCC 7942, was characterized by polyacrylamide gel electrophoresis.Anabaena produced 33 heat shock proteins,P. boryanum 35 proteins, andSynechoccus 19 proteins. The rapid response to heat shock was consistent for all three strains, although the number of time-dependent proteins varied. All strains developed thermotolerance when first pretreated with a sublethal heat shock and then challenged with a previously lethal temperature. A 30-min 30°C incubation was required between the heat shock and challenge forSynechococcus, but not forAnabaena andP. boryanum. Synechococcus cells required a higher challenge temperature (51° vs. 49°C) than the other two strains to destroy control cells that were not pretreated with a heat shock.  相似文献   

10.
The photosynthetic apparatus of Synechocystis sp. PCC 6714 cells grown chemoheterotrophically (dark with glucose as a carbon source) and photoautotrophically (light in a mineral medium) were compared. Dark-grown cells show a decrease in phycocyanin content and an even greater decrease in chlorophyll content with respect to light-grown cells. Analysis of fluorescence emission spectra at 77 K and at 20 °C, of dark- and light-grown cells, and of phycobilisomes isolated from both types of cells, indicated that in darkness the phycobiliproteins were assembled in functional phycobilisomes (PBS). The dark synthesized PBS, however, were unable to transfer their excitation energy to PS II chlorophyll. Upon illumination of dark-grown cells, recovery of photosynthetic activity, pigment content and energy transfer between PBS and PS II was achieved in 24–48 h according to various steps. For O2 evolution the initial step was independent of protein synthesis, but the later steps needed de novo synthesis. Concerning recovery of PBS to PS II energy transfer, light seems to be necessary, but neither PS II functioning nor de novo protein synthesis were required. Similarly, light, rather than functional PS II, was important for the recovery of an efficient energy transfer in nitrate-starved cells upon readdition of nitrate. In addition, it has been shown that normal phycobilisomes could accumulate in a Synechocystis sp. PCC 6803 mutant deficient in Photosystem II activity.Abbreviations APC allophycocyanin - CAP chloroamphenicol - Chl chlorophyll - DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea - CP-47 chlorophyll-binding Photosystem II protein of 47 kDa - EF exoplasmic face - PBS phycobilisome - PC phycocyanin - PS Photosystem  相似文献   

11.
Photosystem I-driven cyclic electron transport was measured in intact cells of Synechococcus sp PCC 7942 grown under different light intensities using photoacoustic and spectroscopic methods. The light-saturated capacity for PS I cyclic electron transport increased relative to chlorophyll concentration, PS I concentration, and linear electron transport capacity as growth light intensity was raised. In cells grown under moderate to high light intensity, PS I cyclic electron transport was nearly insensitive to methyl viologen, indicating that the cyclic electron supply to PS I derived almost exclusively from a thylakoid dehydrogenase. In cells grown under low light intensity, PS I cyclic electron transport was partially inhibited by methyl viologen, indicating that part of the cyclic electron supply to PS I derived directly from ferredoxin. It is proposed that the increased PSI cyclic electron transport observed in cells grown under high light intensity is a response to chronic photoinhibition.Abbreviations DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - ES energy storage - MV methyl viologen - PAm photoacoustic thermal signal with strong non-modulated background light added - PAs photoacoustic thermal signal without background light added CIW/DPB Publication No. 1205.  相似文献   

12.
Thylakoids and Photosystem II particles prepared from the cyanobacterium Synechococcus PCC 7942 washed with a HEPES/glycerol buffer exhibited low rates of light-induced oxygen evolution. Addition of either Ca2+ or Mg2+ to both thylakoids and Photosystem II particles increased oxygen evolution independently, maximal rates being obtained by addition of both ions. If either preparation was washed with NaCl, light induced O2 evolution was completely inhibited, but re-activated in the same manner by Ca2+ and Mg2+ but to a lower level. In the presence of Mg2+, the reactivation of O2 evolution by Ca2+ allowed sigmoid kinetics, implying co-operative binding. The results are interpreted as indicating that not only Ca2+, but also Mg2+, is essential for light-induced oxygen evolution in thylakoids and Photosystem II particles from Synechococcus PC 7942. The significance of the reactivation kinetics is discussed. Reactivation by Ca2+ was inhibited by antibodies to mammalian calmodulin, indicating that the binding site in Photosystem II may be analogous to that of this protein.Abbreviation HEPES n-2-Hydroxyethylpiperazine--2-ethane sulphonic acid  相似文献   

13.
Phosphorus (P) is widely considered to be the main nutrient limiting the productivity of freshwater phytoplankton, but an assessment of its bioavailability in natural samples is highly complex. In an attempt to provide a novel tool for this purpose, the promoter of the alkaline phosphatase gene, phoA, from Synechococcus sp. PCC 7942 was fused to the luxAB luciferase genes of the bioluminescent bacterium Vibrio harveyi. The resulting construct was introduced into a neutral site on the Synechococcus sp. PCC 7942 genome to yield strain APL, which emitted light when inorganic P concentrations fell below 2.3 μM. Light emission of P‐deprived cells decreased rapidly upon inorganic P readdition. The reporter was demonstrated to be a sensitive tool for monitoring the bioavailability of both inorganic and organic P sources. In water samples taken from a natural freshwater environment (Lake Kinneret, Israel), the luminescence measured correlated with total dissolved phosphate concentrations.  相似文献   

14.
The transformation of the fresh water cyanobacterium Synechococcus PCC7942 with the shuttle-vector pAQ-EX1 developed for the marine cyanobacterium S. PCC7002 was examined. The S. PCC7942 cells were successfully transformed with the pAQ-EX1 vector, and the vector was stably maintained in the transformant cells.  相似文献   

15.
Synechocystis sp. PCC 6803 when grown in the presence of sublethal (M) levels of cobalt chloride shows an enhancement of Photosystem II (PS II) catalyzed Hill reaction. This stimulation seems to be induced by cobalt ions as other metal ions inhibit para-benzoquinone catalyzed Hill reaction. At saturating white light intensity, this enhancement is two times over that of the control cells on unit chlorophyll basis. Analysis of the PS II electron transport rate at varying intensities of white, blue or yellow light suggests an increased maximal rates but no change in the quantum yield or effective antenna size of CoCl2-grown cells. There were no structural and functional changes in the phycobilisome as judged by the absence of changes in the phycocyanin/allophycocyanin ratio, fluorescence emission spectra, second derivative absorption spectra at 77 K and SDS-PAGE analysis of isolated phycobilisomes. The 77 K fluorescence emission spectra of the cells showed a decrease in the ratio of Photosystem I emission (F725) to Photosystem II emission (F685) in CoCl2-grown cells compared to the control cells. These observations indicate three possibilities: (1) there is an increase in the number of Photosystem II units; (2) a faster turnover of Photosystem II centers; or (3) an alteration in energy redistribution between PS II and PS I in CoCl2-grown cells which causes stimulation of Photosystem II electron transport rate.Abbreviations APC allophycocyanin - Chl a chlorophyll a - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - EDTA ethylene diamine tetraacetic acid - PBS phycobilisome - PC phycocyanin - PSI Photosystem I - PS II Photosystem II - pBQ p-benzoquinone - PMSF phenyl methyl sulfonyl fluoride  相似文献   

16.
Cell coloration changes from normal blue-green to yellow or yellow-green when the cyanobacterium Synechococcus sp. strain PCC 7942 is deprived of an essential nutrient. We found that this bleaching process (chlorosis) in cells deprived of sulfur (S) was similar to that in cells deprived of nitrogen (N), but that cells deprived of phosphorus (P) bleached differently. Cells divided once after N deprivation, twice after S deprivation, and four times after P deprivation. Chlorophyll (Chl) accumulation stopped almost immediately upon N or S deprivation but continued for several hours after P deprivation. There was no net Chl degradation during N, S, or P deprivation, although cellular Chl content decreased because cell division continued after Chl accumulation ceased. Levels of the light-harvesting phycobiliproteins declined dramatically in a rapid response to N or S deprivation, reflecting an ordered breakdown of the phycobilisomes (PBS). In contrast, P-deprived cultures continued to accumulate PBS for several hours. Whole PBS were not extensively degraded in P-deprived cells, although the PBS contents of P-deprived cells declined because of continued cell division after PBS accumulation ceased. Levels of mRNAs encoding PBS polypeptides declined by 90 to 95% in N- or S-deprived cells and by 80 to 85% in P-deprived cells. These changes in both the synthesis and stability of PBS resulted in a 90% decline in the PC/Chl ratio of N- or S-deprived cells and a 40% decline in the PC/Chl ratio of P-deprived cells. Therefore, although bleaching appears to be a general response to nutrient deprivation, it is not the same under all nutrient-limited conditions and is probably composed of independently controlled subprocesses.  相似文献   

17.
A Synechococcus sp. strain PCC 7002 psaAB::cat mutant has been constructed by deletional interposon mutagenesis of the psaA and psaB genes through selection and segregation under low-light conditions. This strain can grow photoheterotrophically with glycerol as carbon source with a doubling time of 25 h at low light intensity (10 E m–2 s–1). No Photosystem I (PS I)-associated chlorophyll fluorescence emission peak was detected in the psaAB::cat mutant. The chlorophyll content of the psaAB::cat mutant was approximately 20% that of the wild-type strain on a per cell basis. In the absence of the PsaA and PsaB proteins, several other PS I proteins do not accumulate to normal levels. Assembly of the peripheral PS I proteins PsaC,PsaD, PsaE, and PsaL is dependent on the presence of the PsaA and PsaB heterodimer core. The precursor form of PsaF may be inserted into the thylakoid membrane but is not processed to its mature form in the absence of PsaA and PsaB. The absence of PS I reaction centers has no apparent effect on Photosystem II (PS II) assembly and activity. Although the mutant exhibited somewhat greater fluorescence emission from phycocyanin, most of the light energy absorbed by phycobilisomes was efficiently transferred to the PS II reaction centers in the absence of the PS I. No light state transition could be detected in the psaAB::cat strain; in the absence of PS I, cells remain in state 1. Development of this relatively light-tolerant strain lacking PS I provides an important new tool for the genetic manipulation of PS I and further demonstrates the utility of Synechococcus sp. PCC 7002 for structural and functional analyses of the PS I reaction center.Abbreviations ATCC American type culture collection - Chl chlorophyll - DCMU 3-(3,4-dichlorophyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - PCC Pasteur culture collection - PS I Photosystem I - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

18.
We have constructed a mutant of the cyanobacterium Synechococcus sp. PCC7942 deficient in the Photosystem I subunit PsaL. As has been shown in other cyanobacteria, we find that Photosystem I is exclusively monomeric in the PsaL(-) mutant: no Photosystem I trimers can be isolated. The mutation does not significantly alter pigment composition, photosystem stoichiometry, or the steady-state light-harvesting properties of the cells. In agreement with a study in Synechococcus sp. PCC7002 [Schluchter et al. (1996) Photochem Photobiol 64: 53-66], we find that state transitions, a physiological adaptation of light-harvesting function, occur significantly faster in the PsaL(-) mutant than in the wild-type. To explore the reasons for this, we have used fluorescence recovery after photobleaching (FRAP) to measure the diffusion of phycobilisomes in vivo. We find that phycobilisomes diffuse, on average, nearly three times faster in the PsaL(-) mutant than in the wild-type. We discuss the implications for the mechanism of state transitions in cyanobacteria.  相似文献   

19.
A stable DNA/protein complex having an apparent molecular mass of approximately 150kDa was purified from nitrate-limited cultures of the cyanobacterium Synechococcus sp. strain PCC 7942. Amino-terminal peptide sequencing indicated that the polypeptide was structurally similar to the Dps protein of Escherichia coli; Dps is also known as the product of the starvation- and stationary-phase-inducible gene, pexB. The 150-kDa complex dissociated into a 22-kDa protein monomer after boiling in 2% SDS. The 150-kDa complex preparation had approximately a 10% nucleic acid content and upon dissociation released DNA fragments that were sensitive to S1 nuclease digestion. Immunoblot data indicated that the complex accumulates during stationary phase and during nitrogen, sulfur, and phosphorus limitation. DNA-binding assays indicated that the protein nonspecifically binds both linear and supercoiled DNA. Circular dichroism spectroscopy revealed that the Synechococcus sp. Dps-like protein contains extensive regions of alpha-helical secondary structure. We propose that the 150-kDa complex represents a hexameric aggregate of the Dps-like protein complexed with single-stranded DNA and serves to bind a portion of the chromosomal DNA under nutrient-limited conditions.  相似文献   

20.
Summary Bioconversion of atmospheric carbon dioxide to ethylene was studied in a recombinant cyanobacterium. The gene for the ethylene-forming enzyme ofPseudomonas syringae pv.phaseolicola PK2 was cloned and expressed in the cyanobacteriumSynechococcus PCC7942 R2-SPc by use of a shuttle vector pUC303. The ethylene-forming activityin vivo ofSynechococcus PCC7942 R2-SPc that carried the gene for the ethylene-forming enzyme ofP. syringae pv.phaseolicola PK2 was one-fifth of that ofE. coli JM109 that harbored the same plasmid. The enzyme accounted for 0.021% by weight of the total soluble protein inSynechococcus PCC7942 R2-SPc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号