首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PsbI is a small, integral membrane protein component of photosystem II (PSII), a pigment-protein complex in cyanobacteria, algae and higher plants. To understand the function of this protein, we have isolated the psbI gene from the unicellular cyanobacterium Synechocystis sp. PCC 6803 and determined its nucleotide sequence. Using an antibiotic-resistance cartridge to disrupt and replace the psbI gene, we have created mutants of Synechocystis 6803 that lack the PsbI protein. Analysis of these mutants revealed that absence of the PsbI protein results in a 25–30% loss of PSII activity. However, other PSII polypeptides are present in near wild-type amounts, indicating that no significant destabilization of the PSII complex has occurred. These results contrast with recently reported data indicating that PsbI-deficient mutants of the eukaryotic alga Chlamydomonas reinhardtii are highly light-sensitive and have a significantly lower (80–90%) titer of the PSII complex. In Synechocystis 6803, PsbI-deficient cells appear to be slightly more photosensitive than wild-type cells, suggesting that this protein, while not essential for PSII biogenesis or function, plays a role in the optimization of PSII activity.  相似文献   

2.
The cyanobacteria Synechocystis 6803 and 6714 contain three genes (psbA) coding for the D1 protein. This protein is an essential subunit of photosystem II (PSII) and is the target for herbicides. We have used herbicide-resistant mutants to study the role of the two homologous copies of the psbA genes in both strains (the third copy is not expressed). Several herbicide resistance mutations map within the psbAI gene in Synechocystis 6714 (G. Ajlani et al.), Plant Mol. Biol. 13 (1989): (469–479). We have looked for mutations in copy II. Results show that in Synechocystis 6714, only psbAI contains herbicide resistance mutations. Relative expression of psbAI and psbAII has been measured by analysing the proportions of resistant and sensitive D1 in the thylakoid membranes of the mutants. In normal growth conditions, 95% resistant D1 and 5% sensitive D1 were found. In high light conditions, expression of psbAII was enhanced, producing 15% sensitive D1. This enhancement is specifically due to high light and not to the decrease of D1 concentration caused by photoinhibition. Copy I of Synechocystis 6714 corresponds to copy 2 of Synechocystis 6803 since it was always psbA2 which was recombined in Synechocystis 6803 transformants. PSII of the transformant strains was found to be 95% resistant to herbicides as in resistant mutants of Synechocystis 6714.  相似文献   

3.
The psbZ gene of Synechocystis sp. PCC 6803 encodes the ∼6.6 kDa photosystem II (PSII) subunit. We here report biophysical, biochemical and in vivo characterization of Synechocystis sp. PCC 6803 mutants lacking psbZ. We show that these mutants are able to perform wild-type levels of light-harvesting, energy transfer, PSII oxygen evolution, state transitions and non-photochemical quenching (NPQ) under standard growth conditions. The mutants grow photoautotrophically; however, their growth rate is clearly retarded under low-light conditions and they are not capable of photomixotrophic growth. Further differences exist in the electron transfer properties between the mutants and wild type. In the absence of PsbZ, electron flow potentially increased through photosystem I (PSI) without a change in the maximum electron transfer capacity of PSII. Further, rereduction of P700+ is much faster, suggesting faster cyclic electron flow around PSI. This implies a role for PsbZ in the regulation of electron transfer, with implication for photoprotection.  相似文献   

4.
The involvement of the PsbI protein in the assembly and repair of the photosystem II (PSII) complex has been studied in the cyanobacterium Synechocystis sp. PCC 6803. Analysis of PSII complexes in the wild-type strain showed that the PsbI protein was present in dimeric and monomeric core complexes, core complexes lacking CP43, and in reaction center complexes containing D1, D2, and cytochrome b-559. In addition, immunoprecipitation experiments and the use of a histidine-tagged derivative of PsbI have revealed the presence in the thylakoid membrane of assembly complexes containing PsbI and either the precursor or mature forms of D1. Analysis of PSII assembly in the psbI deletion mutant and in strains lacking PsbI together with other PSII subunits showed that PsbI was not required for formation of PSII reaction center complexes or core complexes, although levels of unassembled D1 were reduced in its absence. However, loss of PsbI led to a dramatic destabilization of CP43 binding within monomeric and dimeric PSII core complexes. Despite the close structural relationship between D1 and PsbI in the PSII complex, PsbI turned over much slower than D1, whereas high light-induced turnover of D1 was accelerated in the absence of PsbI. Overall, our results suggest that PsbI is an early assembly partner for D1 and that it plays a functional role in stabilizing the binding of CP43 in the PSII holoenzyme.  相似文献   

5.
Ammonium is one of the major nutrients for plants, and a ubiquitous intermediate in plant metabolism, but it is also known to be toxic to many organisms, in particular to plants and oxygenic photosynthetic microorganisms. Although previous studies revealed a link between ammonium toxicity and photodamage in cyanobacteria under in vivo conditions, ammonium‐induced photodamage of photosystem II (PSII) has not yet been investigated with isolated thylakoid membranes. We show here that ammonium directly accelerated photodamage of PSII in Synechocystis sp. strain PCC6803, rather than affecting the repair of photodamaged PSII. Using isolated thylakoid membranes, it could be demonstrated that ammonium‐induced photodamage of PSII primarily occurred at the oxygen evolution complex, which has a known binding site for ammonium. Wild‐type Synechocystis PCC6803 cells can tolerate relatively high concentrations of ammonium because of efficient PSII repair. Ammonium tolerance requires all three psbA genes since mutants of any of the three single psbA genes are more sensitive to ammonium than wild‐type cells. Even the poorly expressed psbA1 gene, whose expression was studied in some detail, plays a detectable role in ammonium tolerance.  相似文献   

6.
Pure plasma membrane and thylakoid membrane fractions from Synechocystis 6803 were isolated to study the localisation and processing of the precursor form of the D1 protein (pD1) of photosystem II (PSII). PSII core proteins (D1, D2 and cytb559) were localised both to plasma and thylakoid membrane fractions, the majority in thylakoids. pD1 was found only in the thylakoid membrane where active PSII is known to function. Membrane fatty acid unsaturation was shown to be critical in processing of pD1 into mature D1 protein. This was concluded from pulse-labelling experiments at low temperature using wild type and a mutant Synechocystis 6803 with a low level of membrane fatty acid unsaturation. Further, pD1 was identified as two distinct bands, an indication of two cleavage sites in the precursor peptide or, alternatively, two different conformations of pD1. Our results provide evidence for thylakoid membranes being a primary synthesis site for D1 protein during its light-activated turnover. The existence of the PSII core proteins in the plasma membrane, on the other hand, may be related to the biosynthesis of new PSII complexes in these membranes.  相似文献   

7.
The FtsH2 protease, encoded by the slr0228 gene, plays a key role in the selective degradation of photodamaged D1 protein during the repair of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. To test whether additional proteases might be involved in D1 degradation during high rates of photodamage, we have studied the synthesis and degradation of the D1 protein in ΔPsbO and ΔPsbV mutants, in which the CaMn4 cluster catalyzing oxygen evolution is less stable, and in the D1 processing mutants, D1-S345P and ΔCtpA, which are unable to assemble a functional cluster. All four mutants exhibited a dramatically increased rate of D1 degradation in high light compared to the wild-type. Additional inactivation of the ftsH2 gene slowed the rate of D1 degradation dramatically and increased the level of PSII complexes. We conclude that FtsH2 plays a major role in the degradation of both precursor and mature forms of D1 following donor-side photoinhibition. However, this conclusion concerned only D1 assembled into larger complexes containing at least D2 and CP47. In the ΔpsbEFLJ deletion mutant blocked at an early stage in PSII assembly, unassembled D1 protein was efficiently degraded in the absence of FtsH2 pointing to the involvement of other protease(s). Significantly, the ΔPsbO mutant displayed unusually low levels of cellular chlorophyll at extremely low-light intensities. The possibilities that PSII repair may limit the availability of chlorophyll for the biogenesis of other chlorophyll-binding proteins and that PsbO might have a regulatory role in PSII repair are discussed.  相似文献   

8.
Summary Affinity purified, polyclonal antibodies raised against the Photosystem II 33 kDa manganese-stabilizing polypeptide of the spinach oxygen-evolving complex were used to isolate the gene encoding the homologous protein from Synechocystis 6803. Comparison of the amino acid sequence deduced from the Synechocystis psb1 nucleotide sequence with recently published sequences of spinach and pea confirms the homology indicated by antigenic crossreactivity and shows that the cyanobacterial and higher plant sequences are 43% identical and 63% conserved. Regions of identity, varying in length from 1 to 10 consecutive residues, are distributed throughout the protein. The 28 residues at the amino terminus of the psb1 gene product, characteristic of prokaryotic signal peptides, show homology with the carboxyl-terminal third of the transit sequences of pea and spinach and are most likely needed for the transport of the manganese-stabilizing protein across the thylakoid membrane to its destination of the lumen. Synechocystis mutants which contain a kanamycin resistance gene cassette inserted into the coding region for the 32 kDa polypeptide were constructed. These mutants contain no detectable 32 kDa polypeptide, do not evolve oxygen, and are incapable of photoautotrophic growth.  相似文献   

9.
A recent proteomic analysis of the thylakoid lumen of Arabidopsis thaliana revealed the presence of several PsbP-like proteins, and a homologue to this gene family was detected in the genome of the cyanobacterium Synechocystis sp. PCC 6803 (Schubert M, Petersson UA, Haas BJ, Funk C, Schröder WP, Kieselbach T (2002) J Biol Chem 277, 8354–8365). Using a peptide-directed antibody against this cyanobacterial PsbP-like protein (sll1418) we could show that it was localized in the thylakoid membrane and associated with Photosystem II. While salt washes did not remove the PsbP-like protein from the thylakoid membrane, it was partially lost during the detergent-based isolation of PSII membrane fractions. In total cell extracts this protein is present in the same amount as the extrinsic PsbO protein. We did not see any significant functional difference between the wild-type and a PsbP-like insertion mutant.  相似文献   

10.
Synechocystis sp. PCC 6803 is capable of facultative photoheterotrophy with glucose as the sole carbon source. Eight mutants that were unable to take up glucose were transformed with plasmids from pooled gene banks of wild-type Synechocystis DNA prepared in an Escherichia coli vector that does not replicate in Synechocystis. One mutant (EG216) could be complemented with all gene banks to restore ability for photoheterotrophic growth. One of the gene banks was fractionated into single clones and plasmid DNA from each clone used to complement EG216. This yielded a 1.5 kb DNA fragment that was sequenced. It contained one complete open reading frame (gtr) whose putative gene product displayed high sequence conservation with the xylose transporter of E. coli and the mammalian glucose transporters. Further, the isolated gtr gene interrupted in vitro by a kanamycin resistance cassette could be used to construct mutants from wild-type Synechocystis sp. PCC 6803 that lacked a functional glucose transporter, thus confirming the identity of the gtr gene with the glucose transporter gene. This is the first prokaryotic glucose transporter known to share a sequence relationship with mammalian glucose transporters and the first sugar transporter from a cyanobacterium characterized at the sequence level.  相似文献   

11.
Structural role of the second copy of the rod–core linker CpcG, which was found by genome analysis, was studied in Synechocystis sp. PCC 6803 by gene disruption and fractionation of phycobilisome (sub)complexes. Disruption of cpcG2 (sll1471) resulted in a marked decrease in phycocyanin content both in the background of wild-type and cpcG1 (slr2051)-disruptant. The unique phycocyanin rod–CpcG2 complex without the major allophycocyanin components was isolated from the cpcG1-disruptant. By fluorescence analysis, it was proposed that CpcG2 protein connects the rods with a minor allophycocyanin component, to support energy transfer to Photosystem I.  相似文献   

12.
An isolated 25 kDa protein of Synechocystis sp. PCC 6803 was N-terminally sequenced and assigned to a protein encoded by the ORF slr0924. This ORF shows a certain degree of sequence similarity to a subunit from the protein Translocon at the Inner envelope of pea Chloroplasts (Tic22). The deduced amino acid sequence of Slr0924 has a N-terminal extension, that contains two possible translational start points and two possible cleavage sites for leader peptidases. Immunostaining with an antibody raised to the over-produced protein revealed two cross-reacting forms, which probably correspond to a larger intermediate and the mature protein. Immunogold labelling of thin sections showed that the protein is located mainly in the thylakoid region. This result was verified by thylakoid membrane fractionation indicating that Slr0924 is a lumenal protein. The slr0924 gene product is essential for the viability of Synechocystis sp. PCC 6803 as shown by interposon mutagenesis. The merodiploid strain showed reduced photosynthetic activity compared to the wild-type. Furthermore, growth of the merodiploid strain was found to be completely inhibited after cultivation with glucose. Accordingly, the amount of the slr0924 gene product was regulated by glucose and light intensities in wild-type cells. The potential function of the protein in Synechocystis sp. PCC 6803 will be discussed.  相似文献   

13.
We have isolated a new class of respiration-defective, i.e petite, mutants of the yeast Saccharomyces cerevisiae. Mutations in the GEF1 gene cause cells to grow slowly on rich media containing carbon sources utilized by respiration. This phenotype is suppressed by adding high concentrations of iron to the growth medium. Gef1 mutants also fail to grow on a fermentable carbon source, glucose, when iron is reduced to low concentrations in the medium, suggesting that the GEF1 gene is required for efficient metabolism of iron during growth on fermentable as well as respired carbon sources. However, activity of the iron uptake system appears to be unaffected in gef1 mutants. Fe(II) transporter activity and regulation is normal in gef1 mutants. Fe(III) reductase induction during iron-limited growth is disrupted, but this appears to be a secondary effect of growth rate alterations. The wild-type GEF1 gene was cloned and sequenced; it encodes a protein of 779 amino acids, 13 possible transmembrane domains, and significant similarity to chloride channel proteins from fish and mammals, suggesting that GEF1 encodes an integral membrane protein. A gef1 deletion mutation generated in vitro and introduced into wild-type haploid strains by gene transplacement was not lethal. Oxygen consumption by intact gef1 cells and by mitochondrial fractions isolated from gef1 mutants was reduced 25–50% relative to wild type, indicating that mitochondrial function is defective in these mutants. We suggest that GEF1 encodes a transport protein that is involved in intracellular iron metabolism.  相似文献   

14.
The sll1418 gene encodes a PsbP-like protein in Synechocystis sp. PCC 6803. Expression of sll1418 was similar in BG-11 and in Cl- or Ca2+-limiting media, and inactivation of sll1418 did not prevent photoautotrophic growth in normal or nutrient-limiting conditions. Also the wild-type and ΔPsbP strains exhibited similar oxygen evolution and assembly of Photosystem II (PS II) centers. Inactivation of sll1418 in the ΔPsbO: ΔPsbP, ΔPsbQ:ΔPsbP, ΔPsbU:ΔPsbP and ΔPsbV:ΔPsbP mutants did not prevent photoautotrophy or alter PS II assembly and oxygen evolution in these strains. Moreover, the absence of PsbP did not affect the ability of alkaline pH to restore photoautotrophic growth in the ΔPsbO:ΔPsbU strain. The PsbO, PsbU and PsbV proteins are required for thermostability of PS II and thermal acclimation in Synechocystis sp. PCC 6803 [Kimura et al. (2002) Plant Cell Physiol 43: 932–938]. However, thermostability and thermal acclimation in ΔPsbP cells were similar to wild type. These results are consistent with the conclusion that PsbP is associated with ∼3 of PS II centers, and may play a regulatory role in PS II [Thornton et al. (2004) Plant Cell 16: 2164–2175].  相似文献   

15.
Ogawa T 《Plant physiology》1992,99(4):1604-1608
The ictA gene, renamed ndhL in this paper, essential to inorganic carbon transport of Synechocystis PCC6803, was expressed in Eschericia coli as a fusion protein with glutathione S-transferase. An antibody was raised against this fusion protein. Western analysis of the thylakoid membrane of wild-type (WT) Synechocystis revealed that a protein with an apparent molecular mass of 6.7 kilodaltons cross-reacted with this antibody. No immunoreactive protein was present in the thylakoid membranes of the Synechocystis mutants, RKb and M9, which have defects in the ictA/ndhL gene, or in the cytoplasmic membranes of the WT and mutant cells. Thus, the protein reacted with the antibody is the ictA gene product (IctA) and is localized in the thylakoid membrane of WT cells. IctA was absent in the thylakoid membranes of the M55 mutant, in which the ndhB gene is inactivated, and was poorly immunostained in the membranes of the mutants (M-ndhC and M-ndhK) constructed by inactivating the ndhC and ndhK genes of WT Synechocystis, respectively. The carbon dioxide uptake activity was nearly zero in M-ndhK and was about 40% of the activity of WT cells in M-ndhC. The RKb, M-ndhC, and M-ndhK mutants were unable to grow or grew very slowly under photoheterotrophic conditions. These results indicated that NADH dehydrogenase is essential to inorganic carbon transport and photoheterotrophic growth of Synechocystis and that IctA is one of the subunits of this enzyme.  相似文献   

16.
17.
Irreversible photoinhibition of photosystem II (PSII) occurred when Synechocystis sp. PCC 6803 cells were exposed to very strong light for a prolonged period. When wild-type cells were illuminated at 20 °C for 2 h with light at an intensity of 2,500 μmol photons m−2 s−1, the oxygen-evolving activity of PSII was almost entirely and irreversibly lost, whereas the photochemical reaction center in PSII was inactivated only reversibly. The extent of irreversible photoinhibition was enhanced at lower temperatures and by the genetically engineered rigidification of membrane lipids. Western and Northern blotting demonstrated that, after cells had undergone irreversible photoinhibition, the precursor to D1 protein in PSII was synthesized but not processed properly. These observations may suggest that exposure of Synechocystis cells to strong light results in the irreversible photoinhibition of the oxygen-evolving activity of PSII via impairment of the processing of pre-D1 and that this effect of strong light is enhanced by the rigidification of membrane lipids.  相似文献   

18.
PS I core proteins are expected to interact with the electron donor proteins plastocyanin or cytochrome c 6. To investigate the role of the luminal H loop of PsaB in the assembly and function of the PS I complex, we generated 15 deletion and repetition mutations in the H loop of the PsaB protein from Synechocystis sp. PCC 6803. The mutant strains differed in their photoautotrophic growth. The PS I proteins could not be detected in the membranes of mutants in which the N438–E448, I453–T464, or S500–G512 region was deleted from the PsaB protein, indicating the essential role of these segments in proper folding of the PsaB protein. Mutants with partial or complete deletion of the L469–D496 segment contained the PS I proteins. These results indicate that the regions near the transmembrane helices are more important for the assembly of PsaB than the middle region of the H loop. The L469-D496 segment in the H loop of PsaB is dispensable in the interaction between the PS I complex and the soluble donor proteins. These results suggested that sections of the H loop of PsaB are crucial for the structural integrity of the PsaB protein.  相似文献   

19.
20.
The gene products of sll0337 and slr0081 in Synechocystis sp. PCC 6803 have been identified as the homologues of the Escherichia coli phosphate-sensing histidine kinase PhoR and response regulator PhoB, respectively. Interruption of sll0337, the gene encoding the histidine protein kinase, by a spectinomycin-resistance cassette blocked the induction of alkaline phosphatase activity under phosphate-limiting conditions. A similar result was obtained when slr0081, the gene encoding the response regulator, was interrupted with a cassette conferring resistance to kanamycin. In addition, the phosphate-specific transport system was not up-regulated in our mutants when phosphate was limiting. Unlike other genes for bacterial phosphate-sensing two-component systems, sll0337 and slr0081 are not present in the same operon. Although there are three assignments for putative alkaline phosphatase genes in the Synechocystis sp. PCC 6803 genome, only sll0654 expression was detected by northern analysis under phosphate limitation. This gene codes for a 149 kDa protein that is homologous to the cyanobacterial alkaline phosphatase reported in Synechococcus sp. PCC 7942 [Ray, J.M., Bhaya, D., Block, M.A. and Grossman, A.R. (1991) J. Bact. 173: 4297–4309]. An alignment identified a conserved 177 amino acid domain that was found at the N-terminus of the protein encoded by sll0654 but at the C-terminus of the protein in Synechococcus sp. PCC 7942.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号