首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Stockholm Hierarchy is a professional consensus created to define the preferred approaches to defining analytical quality. The quality of a laboratory measurement can also be classified by the quality of the limits that the value is compared with, namely reference interval limits and clinical decision limits. At the highest level in the hierarchy would be placed clinical decision limits based on clinical outcome studies. The second level would include both formal reference interval studies (studies of intra and inter-individual variations) and clinical decision limits based on clinician survey. While these approaches are commonly used, they require a lot of resources to define accurately. Placing laboratory experts on the third level would suggest that although they can also define reference intervals by consensus, theirs aren’t as well regarded as clinician defined limits which drive clinical behaviour. Ideally both analytical and clinical considerations should be made, with clinicians and laboratorians both having important information to consider. The fourth level of reference intervals would be for those defined by survey or by regulatory authorities because of the focus on what is commonly achieved rather than what is necessarily correct. Finally, laboratorians know that adopting reference limits from kit inserts or textbook publications is problematic because both methodological issues and reference populations are often not the same as their own. This approach would rank fifth and last. When considering which so called ‘common’ or ‘harmonised reference intervals’ to adopt, both these characteristics and the quality of individual studies need to be assessed. Finally, we should also be aware that reference intervals describe health and physiology while clinical decision limits focus on disease and pathology, and unless we understand and consider the two corresponding issues of test specificity and test sensitivity, we cannot assure the quality of the limits that we report.  相似文献   

2.
Screening, diagnosis and monitoring of paediatric diseases relies on the measurement of a spectrum of disease biomarkers in clinical laboratories to guide important clinical decisions. Physicians rely on the availability of suitable and reliable reference intervals to accurately interpret laboratory test results with data collected during medical history and physical examination. However, critical gaps currently exist in accurate and up-to-date reference intervals (normal values) for accurate interpretation of laboratory tests performed in children and adolescents. These gaps in the available paediatric laboratory reference intervals have the clear potential of contributing to erroneous diagnosis or misdiagnosis of many diseases of childhood and adolescence. Most of the available reference intervals for laboratory tests were determined over two decades ago on older instruments and technologies, and are no longer relevant considering the current testing technology used by clinical laboratories. It is thus critical and of utmost urgency that a more acceptable and comprehensive database be established. There are however many challenges when attempting to establish paediatric reference intervals. Paediatric specimen collection is a major concern for health care providers as it is frequently difficult to obtain sufficient volumes of blood or urine from paediatric patients. Common reference intervals have not been widely implemented due to lack of harmonisation of methods and differences in patient populations. Consequently, clinical laboratory accreditation organisations and licensing agencies require that each laboratory verify or establish reference intervals for each method. To provide such reference intervals requires selection criteria for suitable reference individuals, defined conditions for specimen collection and analysis, method selection to determine reference limits and validation of the reference interval. The current review will provide a brief introduction to the current approach to establishment of reference intervals, will highlight the current gaps in data available in paediatric populations, and review a recent Canadian initiative, CALIPER (Canadian Laboratory Initiative on Paediatric Reference Intervals), to establish a comprehensive database for both traditional and emerging biomarkers of paediatric disease.  相似文献   

3.
Measured serum 25-hydroxyvitamin D concentrations vary depending on the type of assay used and the specific laboratory undertaking the analysis, impairing the accurate assessment of vitamin D status. We investigated differences in serum 25-hydroxyvitamin D concentrations measured at three laboratories (laboratories A and B using an assay based on liquid chromatography-tandem mass spectrometry and laboratory C using a DiaSorin Liaison assay), against a laboratory using an assay based on liquid chromatography-tandem mass spectrometry that is certified to the standard reference method developed by the National Institute of Standards and Technology and Ghent University (referred to as the ‘certified laboratory’). Separate aliquots from the same original serum sample for a subset of 50 participants from the Ausimmune Study were analysed at the four laboratories. Bland-Altman plots were used to visually check agreement between each laboratory against the certified laboratory. Compared with the certified laboratory, serum 25-hydroxyvitamin D concentrations were on average 12.4 nmol/L higher at laboratory A (95% limits of agreement: -17.8,42.6); 12.8 nmol/L higher at laboratory B (95% limits of agreement: 0.8,24.8); and 10.6 nmol/L lower at laboratory C (95% limits of agreement: -48.4,27.1). The prevalence of vitamin D deficiency (defined here as 25-hydroxyvitamin D <50 nmol/L) was 24%, 16%, 12% and 41% at the certified laboratory, and laboratories A, B, and C, respectively. Our results demonstrate considerable differences in the measurement of 25-hydroxyvitamin D concentrations compared with a certified laboratory, even between laboratories using assays based on liquid chromatography-tandem mass spectrometry, which is often considered the gold-standard assay. To ensure accurate and reliable measurement of serum 25-hydroxyvitamin D concentrations, all laboratories should use an accuracy-based quality assurance system and, ideally, comply with international standardisation efforts.  相似文献   

4.
Objective: To determine the validity of the following six body composition methods against a reference method (three‐component model): air displacement plethysmography (BODPOD); estimation from body density using BODPOD; skinfold thickness using the Slaughter equations; bioelectrical impedance, both leg‐leg (TANITA) and hand—foot (Bodystat) approaches; and total body water. Research Methods and Procedures: Forty‐two healthy white 10‐ to 14‐year‐old boys (mean age, 12.9 ± 1.0 years) were enrolled in this study. Measures of body fat percentage and body fat mass derived from the three‐component model were used as the reference method. Validity of all of the other methods was assessed by comparison against the reference by calculation of biases and limits of agreement. Results: Mean body fatness measured using the reference method was 16.4 ± 11.6% and 8.7 ± 7.0 kg. Estimates of fatness from total body water had the narrowest limits of agreement relative to the reference (+0.9 ± 5.0% body fat; +0.5 ± 2.9 kg fat mass). For all other methods tested, we observed large biases and very wide limits of agreement. Discussion: This study suggests that the validity of newer field and laboratory methods for estimation of body composition is poor in adolescent boys. For applications where high accuracy of estimation at the individual level is essential, only reference methods would be acceptable.  相似文献   

5.
Reference intervals are ideally defined on apparently healthy individuals and should be distinguished from clinical decision limits that are derived from known diseased patients. Knowledge of physiological changes is a prerequisite for understanding and developing reference intervals. Reference intervals may differ for various subpopulations because of differences in their physiology, most obviously between men and women, but also in childhood, pregnancy and the elderly. Changes in laboratory measurements may be due to various physiological factors starting at birth including weaning, the active toddler, immunological learning, puberty, pregnancy, menopause and ageing. The need to partition reference intervals is required when there are significant physiological changes that need to be recognised. It is important that laboratorians are aware of these changes otherwise reference intervals that attempt to cover a widened inter-individual variability may lose their usefulness. It is virtually impossible for any laboratory to directly develop reference intervals for each of the physiological changes that are currently known, however indirect techniques can be used to develop or validate reference intervals in some difficult situations such as those for children. Physiology describes our life’s journey, and it is only when we are familiar with that journey that we can appreciate a pathological departure.  相似文献   

6.
Investigation of plasma factor VIII activities in 20 reference (normal) individuals (N = 20) is frequently used to evaluate the reference distribution parameters by means of simple statistical method. Two examples demonstrate the inaccuracy of conclusions of such a small sample of data. The first one shows the comparison of estimate of F.VIII:C reference limits obtained from examination of 6 different groups randomly chosen (N = 20 each) with a group of N = 120 reference individuals. The second example presents the balance of haemophilia A carrier detection rate performed in 30 obligatory carriers and 42 normal women by examination of F.VIII:C and VWF-Ag using universal discriminant. The correction figures typical for specific conditions of our laboratory are obtained from examination of N = 20 and N = 80 individuals and using heuristic optimalization.  相似文献   

7.
The conduct of Phase I/II HIV vaccine trials internationally necessitates the development of region-specific clinical reference ranges for trial enrollment and participant monitoring. A population based cohort of adults in Kericho, Kenya, a potential vaccine trial site, allowed development of clinical laboratory reference ranges. Lymphocyte immunophenotyping was performed on 1293 HIV seronegative study participants. Hematology and clinical chemistry were performed on up to 1541 cohort enrollees. The ratio of males to females was 1.9:1. Means, medians and 95% reference ranges were calculated and compared with those from other nations. The median CD4+ T cell count for the group was 810 cells/microl. There were significant gender differences for both red and white blood cell parameters. Kenyan subjects had lower median hemoglobin concentrations (9.5 g/dL; range 6.7-11.1) and neutrophil counts (1850 cells/microl; range 914-4715) compared to North Americans. Kenyan clinical chemistry reference ranges were comparable to those from the USA, with the exception of the upper limits for bilirubin and blood urea nitrogen, which were 2.3-fold higher and 1.5-fold lower, respectively. This study is the first to assess clinical reference ranges for a highland community in Kenya and highlights the need to define clinical laboratory ranges from the national community not only for clinical research but also care and treatment.  相似文献   

8.
Till now, multivariate reference regions have played only a marginal role in the practice of clinical chemistry and laboratory medicine. The major reason for this fact is that such regions are traditionally determined by means of concentration ellipsoids of multidimensional Gaussian distributions yielding reference limits which do not allow statements about possible outlyingness of measurements taken in specific diagnostic tests from a given patient or subject. As a promising way around this difficulty we propose to construct multivariate reference regions as p-dimensional rectangles or (in the one-sided case) rectangular half-spaces whose edges determine univariate percentile ranges of the same probability content in each marginal distribution. In a first step, the corresponding notion of a quantile of a p-dimensional probability distribution of any type and shape is made mathematically precise. Subsequently, both parametric and nonparametric procedures of estimating such a quantile are described. Furthermore, results on sample-size calculation for reference-centile studies based on the proposed definition of multivariate quantiles are presented generalizing the approach of Jennen-Steinmetz and Wellek.  相似文献   

9.

Background

Several point-of-care (POC) tests are available for evaluation of febrile patients, but the data about their performance in acute care setting is sparse. We investigated the analytical accuracy and feasibility of POC tests for white blood cell (WBC) count and C-reactive protein (CRP) at the pediatric emergency department (ED).

Methods

In the first part of the study, HemoCue WBC and Afinion AS100 CRP POC analyzers were compared with laboratory’s routine WBC (Sysmex XE-2100) and CRP (Modular P) analyzers in the hospital central laboratory in 77 and 48 clinical blood samples, respectively. The POC tests were then adopted in use at the pediatric ED. In the second part of the study, we compared WBC and CRP levels measured by POC and routine methods during 171 ED patient visits by 168 febrile children and adolescents. Attending physicians performed POC tests in capillary fingerprick samples.

Results

In parallel measurements in the laboratory both WBC and CRP POC analyzers showed good agreement with the reference methods. In febrile children at the emergency department (median age 2.4 years), physician performed POC determinations in capillary blood gave comparable results with those in venous blood analyzed in the laboratory. The mean difference between POC and reference test result was 1.1 E9/L (95% limits of agreement from -6.5 to 8.8 E9/L) for WBC and -1.2 mg/L (95% limits of agreement from -29.6 to 27.2 mg/L) for CRP.

Conclusions

POC tests are feasible and relatively accurate methods to assess CRP level and WBC count among febrile children at the ED.  相似文献   

10.

Background

Traditional electronic medical record (EMR) interfaces mark laboratory tests as abnormal based on standard reference ranges derived from healthy, middle-aged adults. This yields many false positive alerts with subsequent alert-fatigue when applied to complex populations like hospitalized, critically ill patients. Novel EMR interfaces using adjusted reference ranges customized for specific patient populations may ameliorate this problem.

Objective

To compare accuracy of abnormal laboratory value indicators in a novel vs traditional EMR interface.

Methods

Laboratory data from intensive care unit (ICU) patients consecutively admitted during a two-day period were recorded. For each patient, available laboratory results and the problem list were sent to two mutually blinded critical care experts, who marked the values about which they would like to be alerted. All disagreements were resolved by an independent super-reviewer. Based on this gold standard, we calculated and compared the sensitivity, specificity, positive and negative predictive values (PPV, NPV) of customized vs traditional abnormal value indicators.

Results

Thirty seven patients with a total of 1341 laboratory results were included. Experts’ agreement was fair (kappa = 0.39). Compared to the traditional EMR, custom abnormal laboratory value indicators had similar sensitivity (77% vs 85%, P = 0.22) and NPV (97.1% vs 98.6%, P = 0.06) but higher specificity (79% vs 61%, P<0.001) and PPV (28% vs 11%, P<0.001).

Conclusions

Reference ranges for laboratory values customized for an ICU population decrease false positive alerts. Disagreement among clinicians about which laboratory values should be indicated as abnormal limits the development of customized reference ranges.  相似文献   

11.

Background

Clinical laboratory reference values from North American and European populations are currently used in most Africans countries due to the absence of locally derived reference ranges, despite previous studies reporting significant differences between populations. Our aim was to define reference ranges for both genders in 18 to 24 year-old Mozambicans in preparation for clinical vaccine trials.

Methods

A cross-sectional study including 257 volunteers (102 males and 155 females) between 18 and 24 years was performedat a youth clinic in Maputo, Mozambique. All volunteers were clinically healthy and human immunodeficiency virus, Hepatitis B virus and syphilis negative.Median and 95% reference ranges were calculated for immunological, hematological and chemistry parameters. Ranges were compared with those reported based on populations in other African countries and the US. The impact of applying US NIH Division of AIDS (DAIDS) toxicity tables was assessed.

Results

The immunology ranges were comparable to those reported for the US and western Kenya.There were significant gender differences in CD4+ T cell values 713 cells/µL in males versus 824 cells/µL in females (p<0.0001). Hematologic values differed from the US values but were similar to reports of populations in western Kenya and Uganda. The lower and upper limits of the ranges for hemoglobin, hematocrit, red blood cells, white blood cells and lymphocytes were somewhat lower than those from these African countries. The chemistry values were comparable to US values, with few exceptions. The upper limits for ALT, AST, bilirubin, cholesterol and triglycerides were higher than those from the US. DAIDStables for adverse events predicted 297 adverse events and 159 (62%) of the volunteers would have been excluded.

Conclusion

This study is the first to determine normal laboratory parameters in Mozambique. Our results underscore the necessity of establishing region-specific clinical reference ranges for proper patient management and safe conduct of clinical trials.  相似文献   

12.
Abstract We investigated the effectiveness of a two-vial fecal transport system: glycerol-buffered saline (GBS) and modified Cary-Blair with antibiotics (CBA) to transport stool samples to an enteric disease reference laboratory. In a blind study we compared the results of culturing 41 specimens promptly in the field laboratory to subculturing GBS and CBA in the reference laboratory. A pathogen was isolated from 72% of the cases in each laboratory. In addition, a pathogen was isolated from 32 of 45 samples inoculated into GBS and CBA and transported to the reference laboratory for subculture. These results demonstrate that GBS and CBA are effective means of transporting specimens to a reference laboratory when studying the etiology of diarrhea in remote parts of the world.  相似文献   

13.
Expected values, reference ranges, or reference limits are necessary to enable clinicians to apply analytical chemical data in the delivery of health care. Determination of references ranges is not straightforward in terms of either selecting a reference population or performing statistical analysis. In light of logistical, scientific, and economic obstacles, it is understandable that clinical laboratories often combine approaches in developing health associated reference values. A laboratory may choose to:
1.  Validate either reference ranges of other laboratories or published data from clinical research or both, through comparison of patients test data.
2.  Base the laboratory’s reference values on statistical analysis of results from specimens assayed by the clinical reference laboratory itself.
3.  Adopt standards or recommendations of regulatory agencies and governmental bodies.
4.  Initiate population studies to validate transferred reference ranges or to determine them anew.
Effects of external contamination and anecdotal information from clinicians may be considered. The clinical utility of hair analysis is well accepted for some elements. For others, it remains in the realm of clinical investigation. This article elucidates an approach for establishment of reference ranges for elements in human scalp hair. Observed levels of analytes from hair specimens from both our laboratory’s total patient population and from a physician-defined healthy American population have been evaluated. Examination of levels of elements often associated with toxicity serves to exemplify the process of determining reference ranges in hair. In addition the approach serves as a model for setting reference ranges for analytes in a variety of matrices.  相似文献   

14.
Traceability, reference systems and result comparability   总被引:3,自引:2,他引:1       下载免费PDF全文
The standardisation of measurements is of high priority in laboratory medicine, its purpose being to achieve closer comparability of results obtained using routine measurement procedures. At present, there is international cooperation in developing reference measurement systems (reference methods, reference materials, and reference laboratory networks) for analytes of clinical significance. These reference systems will reduce, wherever possible, measurement uncertainty and promote the comparability of results. The implementation of measurement traceability through the reference system provides one of the most important tools that supports the standardisation process in laboratory medicine. It aims to achieve result comparability regardless of the measurement procedure (test kit) and the clinical laboratory where analyses are carried out. The aim of this review is to discuss some concepts related to the achievement of standardisation by the implementation of a metrologically-correct measurement system and to provide some examples that illustrate the complexity of this approach and the impact of these activities on patient care.  相似文献   

15.
In addition to reference measurement procedures and reference materials, reference or calibration laboratories play an integral role in the implementation of measurement traceability in routine laboratories. They provide results of measurements using higher-order methods, e.g. isotope dilution mass spectrometry and may assign values to materials to be used for external quality assessment programs and to secondary reference materials. The requirements for listing of laboratories that provide reference measurement services include a statement of the metrological level or principle of measurement, accreditation as a calibration laboratory according to ISO 15195 and the participation in a proficiency testing system (regular inter-laboratory comparisons) for reference laboratories. Ring trials are currently conducted for thirty well-defined measurands and the results are made available to all laboratories. Through the use of reference laboratory services that are listed by the Joint Committee for Traceability in Laboratory Medicine there is the opportunity to further promote traceability and standardisation of laboratory measurements.  相似文献   

16.
Statistics in Biosciences - Human exposure to persistent environmental pollutants often results in concentrations with a range of values below the laboratory detection limits. Growing evidence...  相似文献   

17.
Harmful microalgal blooms or red tides are often associated with high levels of pH. Similarly, species and strains of microalgae cultivated in the laboratory with enriched media experience recurrent events of high pH between dilutions with fresh medium. To study the potential for laboratory selection by high pH, we compared, under identical experimental conditions the upper pH tolerance limits for growth in addition to growth and production rates of 23 strains of the common bloom-forming dinoflagellate Heterocapsa triquetra. The strains had been cultivated in official culture centres from ca. 1 to 51 years (corresponding to 200–10,000 generations). Strains cultivated for less than 10 years had significantly lower mean and median upper pH tolerance limits for growth, and higher growth and production rates compared to strains cultivated for more than 20 years. The range and variation of upper pH tolerance limits were higher in the younger (<10 years) than in the older strains (>20 years). These results suggest selection of strains best adapted to tolerate or postpone/avoid events of high pH in the laboratory. Our data have implications for experimental studies of pH response and reaction norms in general of microalgae and the inclusion of species-specific data into ecosystem models.  相似文献   

18.
目的 为提高动物实验室生物安全意识,供大动物生物安全实验室设计、施工、使用和管理借鉴.方法 采用考察和分析的方法了解了北美国家大动物生物安全实验室的设计理念、设备、设施、动物试验及动物实验室管理.结果 大动物生物安全实验宝与我国畜牧业健康发展和社会稳定密切相关,我国与国外大动物生物安全实验室存在较大的差距.结论 我国应借鉴国外大动物生物安全实验室设计的理念,完善大动物实验室基础设施,增设相应的设备和提升动物实验室工作人员的生物安全意识.  相似文献   

19.
Based on the DNA sequences of the junctions between recombinant and cotton genomic DNA of the two genetically modified (GM) cotton varieties, herbicide-tolerance Mon1445 and insect-resistant Mon531, event-specific primers and probes for qualitative and quantitative PCR detection for both GM cotton varieties were designed, and corresponding detection methods were developed. In qualitative PCR detection, the simplex and multiplex PCR detection systems were established and employed to identify Mon1445 and Mon531 from other GM cottons and crops. The limits of detection (LODs) of the simplex PCR were 0.05% for both Mon1445 and Mon531 using 100 ng DNA templates in one reaction, and the LOD of multiplex PCR analysis was 0.1%. For further quantitative detection using TaqMan real-time PCR systems for Mon1445 and Mon531, one plasmid pMD-ECS, used as reference molecule was constructed, which contained the quantitative amplified fragments of Mon1445, Mon531, and cotton endogenous reference gene. The limits of quantification (LOQs) of Mon1445 and Mon531 event-specific PCR systems using plasmid pMD-ECS as reference molecule were 10 copies, and the quantification range was from 0.03 to 100% in 100 ng of the DNA template for one reaction. Thereafter, five mixed cotton samples containing 0, 0.5, 0.9, 3 and 5% Mon1445 or Mon531 were quantified using established real-time PCR systems to evaluate the accuracy and precision of the developed real-time PCR detection systems. The accuracy expressed as bias varied from 1.33 to 8.89% for tested Mon1445 cotton samples, and from 2.67 to 6.80% for Mon531. The precision expressed as relative standard deviations (RSD) were different from 1.13 to 30.00% for Mon1445 cotton, and from 1.27 to 24.68% for Mon531. The range of RSD was similar to other laboratory results (25%). Concluded from above results, we believed that the established event-specific qualitative and quantitative PCR systems for Mon1445 and Mon531 in this study are acceptable and suitable for GM cotton identification and quantification.  相似文献   

20.
A 60-year-old Japanese man was diagnosed as having hypouricemia at an annual health check-up. The routine laboratory data was not remarkable except that the patient's hypouricemia and plasma levels of xanthine and hypoxanthine were much higher than those of normal subjects. Furthermore, the patient's daily urinary excretion of xanthine and hypoxanthine was markedly increased compared with reference values. The xanthine dehyrogenase activity of the duodenal mucosa was below the limits of detection. Nevertheless, allopurinol was metabolized to oxypurinol in vivo. Based on these findings, a subtype of classical xanthinuria (type I) was diagnosed. The xanthine dehyrogenase protein was detected by Western blotting analysis. Sequencing of the cDNA of the xanthine dehyrogenase obtained from the duodenal mucosa revealed that a point mutation of C to T had occurred in nucleotide 445. This changed codon 149 from CGC (Arg) to TGC (Cys), a finding that has not been previously reported in patients with classical xanthinuria type I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号