共查询到20条相似文献,搜索用时 8 毫秒
1.
Nakamura T Yamashita H Nagano Y Takahashi T Avraham S Avraham H Matsumoto M Nakamura S 《FEBS letters》2002,517(1-3):190-194
The hyperthermophilic archaeon Methanococcus jannaschii uses several non-canonical enzymes to catalyze conserved reactions in glycolysis and gluconeogenesis. A highly diverged gene from that organism has been proposed to function as a phosphoglycerate mutase. Like the canonical cofactor-independent phosphoglycerate mutase and other members of the binuclear metalloenzyme superfamily, this M. jannaschii protein has conserved nucleophilic serine and metal-binding residues. Yet the substrate-binding residues are not conserved. We show that the genes at M. jannaschii loci MJ0010 and MJ1612 encode thermostable enzymes with phosphoglycerate mutase activity. Phylogenetic analyses suggest that this gene family arose before the divergence of the archaeal lineage. 相似文献
2.
Taniyama Y Weber DS Rocic P Hilenski L Akers ML Park J Hemmings BA Alexander RW Griendling KK 《Molecular and cellular biology》2003,23(22):8019-8029
3-Phosphoinositide-dependent protein kinase 1 (PDK1) is a signal integrator that activates the AGC superfamily of serine/threonine kinases. PDK1 is phosphorylated on tyrosine by oxidants, although its regulation by agonists that stimulate G-protein-coupled receptor signaling pathways and the physiological consequences of tyrosine phosphorylation in this setting have not been fully identified. We found that angiotensin II stimulates the tyrosine phosphorylation of PDK1 in vascular smooth muscle in a calcium- and c-Src-dependent manner. The calcium-activated tyrosine kinase Pyk2 acts as a scaffold for Src-dependent phosphorylation of PDK1 on Tyr9, which permits phosphorylation of Tyr373 and -376 by Src. This critical function of Pyk2 is further supported by the observation that Pyk2 and tyrosine-phosphorylated PDK1 colocalize in focal adhesions after angiotensin II stimulation. Importantly, infection of smooth muscle cells with a Tyr9 mutant of PDK1 inhibits angiotensin II-induced tyrosine phosphorylation of paxillin and focal adhesion formation. These observations identify a novel interaction between PDK1 and Pyk2 that regulates the integrity of focal adhesions, which are major compartments for integrating signals for cell growth, apoptosis, and migration. 相似文献
3.
Prutzman KC Gao G King ML Iyer VV Mueller GA Schaller MD Campbell SL 《Structure (London, England : 1993)》2004,12(5):881-891
The focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK) is critical for recruitment of FAK to focal adhesions and contains tyrosine 926, which, when phosphorylated, binds the SH2 domain of Grb2. Structural studies have shown that the FAT domain is a four-helix bundle that exists as a monomer and a dimer due to domain swapping of helix 1. Here, we report the NMR solution structure of the avian FAT domain, which is similar in overall structure to the X-ray crystal structures of monomeric forms of the FAT domain, except that loop 1 is longer and less structured in solution. Residues in this region undergo temperature-dependent exchange broadening and sample aberrant phi and psi angles, which suggests that this region samples multiple conformations. We have also identified a mutant that dimerizes approximately 8 fold more than WT FAT domain and exhibits increased phosphorylation of tyrosine 926 both in vitro and in vivo. 相似文献
4.
Tsuchida M Manthei ER Alam T Knechtle SJ Hamawy MM 《The Journal of biological chemistry》2000,275(2):1344-1350
The T cell receptor (TCR)-CD3 complex and the costimulatory molecule CD28 are critical for T cell function. Both receptors utilize protein tyrosine kinases (PTKs) for the phosphorylation of various signaling molecules, a process that is critical for the function of both receptors. The PTKs of the focal adhesion family, Pyk2 and Fak, have been implicated in the signaling of TCR and CD28. We show here evidence for the regulation of TCR- and CD28-induced tyrosine phosphorylation of the focal adhesion PTKs by protein kinase C (PKC). Thus, treating Jurkat T cells with the PKC activator phorbol 12-myristate 13-acetate (PMA) rapidly and strongly reversed receptor-induced tyrosine phosphorylation of the focal adhesion PTKs. In contrast, PMA did not affect TCR-induced tyrosine phosphorylation of CD3zeta or the PTKs Fyn and Zap-70. However, PMA induced a strong and rapid dephosphorylation of the linker molecule for activation of T cells. PMA failed to induce the dephosphorylation of proteins in PKC-depleted cells or in cells pretreated with the PKC inhibitor Ro-31-8220, confirming the role of PKC in mediating the PMA effect on receptor-induced protein tyrosine phosphorylation. The involvement of protein tyrosine phosphatases (PTPases) in mediating the dephosphorylation of the focal adhesion PTKs was confirmed by the failure of PMA to dephosphorylate Pyk2 in cells pretreated with the PTPase inhibitor orthovanadate. These results implicate PKC in the regulation of receptor-induced tyrosine phosphorylation of the focal adhesion PTKs in T cells. The data also suggest a role for PTPases in the PKC action. 相似文献
5.
Activation of pyk2/related focal adhesion tyrosine kinase and focal adhesion kinase in cardiac remodeling 总被引:8,自引:0,他引:8
Melendez J Welch S Schaefer E Moravec CS Avraham S Avraham H Sussman MA 《The Journal of biological chemistry》2002,277(47):45203-45210
Cellular remodeling during progression of dilation involves focal adhesion contact reorganization. However, the signaling mechanisms and structural consequences leading to impaired cardiomyocyte adhesion are poorly defined. These events were studied in tropomodulin-overexpressing transgenic mice that develop dilated cardiomyopathy associated with chronic elevation of intracellular calcium. Analysis of tropomodulin-overexpressing transgenic hearts by immunoblot and confocal microscopy revealed activation and redistribution of signaling molecules known to regulate adhesion. Calcium-dependent pyk2/related focal adhesion tyrosine kinase (RAFTK) showed changes in expression and phosphorylation state, similar to changes observed for a related downstream target molecule of pyk2/RAFTK termed focal adhesion kinase. Paxillin, the target substrate molecule for focal adhesion kinase phosphorylation, was redistributed in tropomodulin-overexpressing transgenic hearts with enhanced paxillin phosphorylation and cleavage. Certain aspects of the in vivo signaling phenotype including increased paxillin phosphorylation could be recapitulated in vitro using neonatal rat cardiomyocytes infected with recombinant adenovirus to overexpress tropomodulin. In addition, increasing intracellular calcium levels with ionomycin induced pyk2/RAFTK phosphorylation, and adenovirally mediated expression of wild-type pyk2/RAFTK resulted in increased phospho-pyk2/RAFTK levels and concomitant paxillin phosphorylation. Collectively, these results delineate a cardiomyocyte signaling pathway associated with dilation that has potential relevance for cardiac remodeling, focal adhesion reorganization, and loss of contractility. 相似文献
6.
van Buul JD Anthony EC Fernandez-Borja M Burridge K Hordijk PL 《The Journal of biological chemistry》2005,280(22):21129-21136
Vascular endothelial-cadherin (VE-cadherin) controls endothelial cell-cell adhesion and preserves endothelial integrity. In order to maintain endothelial barrier function, VE-cadherin function is tightly regulated through mechanisms that involve protein phosphorylation and cytoskeletal dynamics. Here, we show that loss of VE-cadherin function results in intercellular gap formation and a drop in electrical resistance of monolayers of primary human endothelial cells. Detailed analysis revealed that loss of endothelial cell-cell adhesion, induced by VE-cadherin-blocking antibodies, is preceded by and dependent on a rapid activation of Rac1 and increased production of reactive oxygen species. Moreover, VE-cadherin-associated beta-catenin is tyrosine-phosphorylated upon loss of cell-cell contact. Finally, the redox-sensitive proline-rich tyrosine kinase 2 (Pyk2) is activated and recruited to cell-cell junctions following the loss of VE-cadherin homotypic adhesion. Conversely, the inhibition of Pyk2 activity in endothelial cells by the expression of CRNK (CADTK/CAKbeta-related non-kinase), an N-terminal deletion mutant that acts in a dominant negative fashion, not only abolishes the increase in beta-catenin tyrosine phosphorylation but also prevents the loss of endothelial cell-cell contact. These results implicate Pyk2 in the reduced cell-cell adhesion induced by the Rac-mediated production of ROS through the tyrosine phosphorylation of beta-catenin. This signaling is initiated upon loss of VE-cadherin function and is important for our insight in the modulation of endothelial integrity. 相似文献
7.
Pandey P Avraham S Kumar S Nakazawa A Place A Ghanem L Rana A Kumar V Majumder PK Avraham H Davis RJ Kharbanda S 《The Journal of biological chemistry》1999,274(15):10140-10144
The stress-activated p38 mitogen-activated protein kinase (p38 MAPK), a member of the subgroup of mammalian kinases, appears to play an important role in regulating inflammatory responses, including cytokine secretion and apoptosis. The upstream mediators that link extracellular signals with the p38 MAPK signaling pathway are currently unknown. Here we demonstrate that pp125 focal adhesion kinase-related tyrosine kinase RAFTK (also known as PYK2, CADTK) is activated specifically by methylmethane sulfonate (MMS) and hyperosmolarity but not by ultraviolet radiation, ionizing radiation, or cis-platinum. Overexpression of RAFTK leads to the activation of p38 MAPK. Furthermore, overexpression of a dominant-negative mutant of RAFTK (RAFTK K-M) inhibits MMS-induced p38 MAPK activation. MKK3 and MKK6 are known potential constituents of p38 MAPK signaling pathway, whereas SEK1 and MEK1 are upstream activators of SAPK/JNK and ERK pathways, respectively. We observe that the dominant-negative mutant of MKK3 but not of MKK6, SEK1, or MEK1 inhibits RAFTK-induced p38 MAPK activity. Furthermore, the results demonstrate that treatment of cells with 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, tetra(acetoxymethyl)-ester, a membrane-permeable calcium chelator, inhibits MMS-induced activation of RAFTK and p38 MAPK. Taken together, these findings indicate that RAFTK represents a stress-sensitive mediator of the p38 MAPK signaling pathway in response to certain cytotoxic agents. 相似文献
8.
We have investigated tyrosine phosphorylation of cellular proteins at different cell densities. A tyrosine-phosphorylated protein of 120 kDa was detected when cells were plated sparsely. The phosphorylation level of the protein gradually declined as the cells were plated at higher densities or when the sparsely plated cells approached confluence. This density-dependent phosphorylation was also associated with cell attachment since it disappeared when the cells were detached from plates or when the cells were cultured in suspension. Immunoblotting and immunoprecipitation analyses with specific antibodies revealed that the 120-kDa protein corresponded to the focal adhesion kinase (FAK) and the protein level of FAK was not altered at different cell densities. In vitro kinase assays demonstrated that the kinase activity of FAK decreased with increasing cell densities in parallel with its dephosphorylation. Cell density also affects localization of FAK associated with rearrangement of actin stress fibers. At low cell densities, FAK and actin stress fiber are distributed around the periphery of cells while they are dispersed over the ventral surface in high-density cells. Finally, the density-regulated tyrosine phosphorylation and localization of FAK appeared to be mediated by an insoluble factor produced by high-density cells. 相似文献
9.
Identification and characterization of a novel protein that regulates RNA-protein interaction 总被引:11,自引:0,他引:11
In a previous study [Nachaliel et al., 1993], we identified an RNA-binding protein (RBP) in FTO-2B rat hepatoma cells whose activity was stimulated upon the dissociation of a protein factor. We report in this article that the RBP is a complex protein of about 400 kDa, composed of RNA-binding subunit(s) (RBS), and regulatory subunit(s) (RS). We purified the RS to near-homogeneity (Mr approximately 25,000) and determined the amino acid sequence of a peptide derived from RS. On the basis of this sequence information, the cDNA for RS was obtained. Recombinant RS protein expressed in Escherichia coli had the capacity to bind RBS and inhibit its RNA-binding activity. The cDNA contains the complete coding sequence because the recombinant protein has the same electrophoretic mobility as that of the native RS in SDS-polyacrylamide gels. Sequence comparison showed that RS is almost identical to DJ-1, a recently discovered protein with an oncogenic potential, and CAP1, a rat sperm protein. However, the protein does not contain any known motifs that can provide a clue as to its exact function. Indirect immunofluorescence analyses showed that in addition to the cytoplasm, where RS is associated with microtubular filaments, the polypeptide is localized to the cell nucleus. The possible role of RS is discussed. 相似文献
10.
Slack-Davis JK Martin KH Tilghman RW Iwanicki M Ung EJ Autry C Luzzio MJ Cooper B Kath JC Roberts WG Parsons JT 《The Journal of biological chemistry》2007,282(20):14845-14852
Focal adhesion kinase (FAK) is a member of a family of non-receptor protein-tyrosine kinases that regulates integrin and growth factor signaling pathways involved in cell migration, proliferation, and survival. FAK expression is increased in many cancers, including breast and prostate cancer. Here we describe perturbation of adhesion-mediated signaling with a FAK inhibitor, PF-573,228. In vitro, this compound inhibited purified recombinant catalytic fragment of FAK with an IC(50) of 4 nM. In cultured cells, PF-573,228 inhibited FAK phosphorylation on Tyr(397) with an IC(50) of 30-100 nM. Treatment of cells with concentrations of PF-573,228 that significantly decreased FAK Tyr(397) phosphorylation failed to inhibit cell growth or induce apoptosis. In contrast, treatment with PF-573,228 inhibited both chemotactic and haptotactic migration concomitant with the inhibition of focal adhesion turnover. These studies show that PF-573,228 serves as a useful tool to dissect the functions of FAK in integrin-dependent signaling pathways in normal and cancer cells and forms the basis for the generation of compounds amenable for preclinical and patient trials. 相似文献
11.
CB1 cannabinoid receptor-mediated tyrosine phosphorylation of focal adhesion kinase-related non-kinase 总被引:8,自引:0,他引:8
We isolated an INF1 elicitin-inducible cDNA encoding a pleiotropic drug resistance (PDR)-type ATP-binding cassette (ABC) transporter homolog (NtPDR1) in suspension-cultured tobacco Bright Yellow-2 (BY-2) cells by application of differential display PCR. The NtPDR1 (Nicotiana tabacum PDR protein 1) gene also encodes a 162 kDa protein that includes two putative hydrophilic domains containing the ABC signature motif and two putative hydrophobic domains. Expression of the NtPDR1 gene was rapidly and strongly activated by treatment of BY-2 cells with INF1 elicitin. Further, treatment of BY-2 cells with flagellin, a bacterial proteinaceous hypersensitive reaction elicitor, or yeast extract, a general elicitor, also induced NtPDR1 gene expression. These results indicate that NtPDR1 may be involved in the general defense response in tobacco. This is the first report that microbial elicitors induce the expression of a plant ABC transporter gene. 相似文献
12.
Pandey P Avraham S Place A Kumar V Majumder PK Cheng K Nakazawa A Saxena S Kharbanda S 《The Journal of biological chemistry》1999,274(13):8618-8623
The stress-activated protein kinase/c-Jun N-terminal protein kinase (JNK) is induced in response to ionizing radiation and other DNA-damaging agents. Recent studies indicate that activation of JNK is necessary for induction of apoptosis in response to diverse agents. Here we demonstrate that methylmethane sulfonate (MMS)-induced activation of JNK is inhibited by overexpression of the anti-apoptotic protein Bcl-xL, but not by caspase inhibitors CrmA and p35. By contrast, UV-induced JNK activity is insensitive to Bcl-xL. The results demonstrate that treatment with MMS is associated with an increase in tyrosine phosphorylation of related adhesion focal tyrosine kinase (RAFTK)/proline-rich tyrosine kinase 2 (PYK2), an upstream effector of JNK and that this phosphorylation is inhibited by overexpression of Bcl-xL. Furthermore, overexpression of a dominant-negative mutant of RAFTK (RAFTK K-M) inhibits MMS-induced JNK activation. The results indicate that inhibition of RAFTK phosphorylation by MMS in Bcl-xL cells is attributed to an increase in tyrosine phosphatase activity in these cells. Hence, treatment of Bcl-xL cells with sodium vanadate, a tyrosine phosphatase inhibitor, restores MMS-induced activation of RAFTK and JNK. These findings indicate that RAFTK-dependent induction of JNK in response to MMS is sensitive to Bcl-xL, but not to CrmA and p35, by a mechanism that inhibits tyrosine phosphorylation and thereby activation of RAFTK. Taken together, these findings support a novel role for Bcl-xL that is independent of the caspase cascade. 相似文献
13.
Immobilised echistatin promotes platelet adhesion and protein tyrosine phosphorylation 总被引:5,自引:0,他引:5
Belisario MA Tafuri S Di Domenico C Della Morte R Squillacioti C Lucisano A Staiano N 《Biochimica et biophysica acta》2000,1497(2):227-236
Echistatin, a 5000-Da disintegrin, is a strong competitive inhibitor of platelet alpha(IIb)beta(3) binding to fibrinogen. In addition to its antiplatelet activity, echistatin also exhibits activating properties by inducing a switch of alpha(IIb)beta(3) conformation towards an active state. However, soluble echistatin, which is a monomeric ligand, provides only receptor affinity modulation, but it is unable to activate integrin-dependent intracellular signals. Since proteins may exhibit a multivalent functionality as a result of their absorption to a substrate, in this study we evaluated whether immobilised echistatin is able to stimulate platelet adhesion and signalling. The immobilisation process led to an increase of echistatin affinity for integrin(s) expressed on resting platelets. Unlike the soluble form, immobilised echistatin bound at comparable extent either unstimulated or ADP-activated platelets. Furthermore, echistatin presented in this manner was effective in stimulating integrin-dependent protein tyrosine phosphorylation. Platelets adhering to immobilised echistatin showed a pattern of total tyrosine phosphorylated proteins resembling that of fibrinogen-attached platelets. In particular, solid-phase echistatin induced a strong phosphorylation of tyrosine kinases pp72(syk) and pp125(FAK). Inhibitors of platelet signalling, such as apyrase, prostaglandin E(1), cytochalasin D and bisindolylmaleimide, while not affecting platelet adhesion to immobilised echistatin, abolished pp125(FAK) phosphorylation. This suggests that signals activating protein kinase C function, dense granule secretion and cytoskeleton assembly might be involved in echistatin-induced pp125(FAK) phosphorylation. 相似文献
14.
S Kumar S Avraham A Bharti J Goyal P Pandey S Kharbanda 《The Journal of biological chemistry》1999,274(43):30657-30663
Related adhesion focal tyrosine kinase (RAFTK) (also known as PYK2) is a cytoplasmic tyrosine kinase related to the focal adhesion kinase (FAK) p125(FAK). RAFTK is rapidly phosphorylated on tyrosine residues in response to various stimuli, such as tumor necrosis factor-alpha, changes in osmolarity, elevation in intracellular calcium concentration, lysophosphatidic acid, and bradykinin. Overexpression of RAFTK induces activation of c-Jun amino-terminal kinase (also known as stress-activated protein kinase), mitogen-activated protein kinase (MAPK), and p38 MAPK. The present studies demonstrate that RAFTK binds constitutively to the protein tyrosine phosphatase SHPTP1. In contrast to PTP1B, overexpression of wild-type SHPTP1 blocks tyrosine phosphorylation of RAFTK. The results further demonstrate that RAFTK is a direct substrate of SHPTP1 in vitro. Moreover, treatment of PC12 cells with bradykinin is associated with inhibition in tyrosine phosphorylation of RAFTK in the presence of SHPTP1. Furthermore, in contrast to the phosphatase-dead SHPTP1 C453S mutant, overexpression of wild-type SHPTP1 blocks interaction of RAFTK with the SH2-domain of c-Src and inhibits RAFTK-mediated MAPK activation. Significantly, cotransfection of RAFTK with SHPTP1 did not inhibit RAFTK-mediated c-Jun amino-terminal kinase activation. Taken together, these findings suggest that SHPTP1 plays a negative role in PYK2/RAFTK signaling by dephosphorylating RAFTK. 相似文献
15.
James Lulo Joseph Schlessinger 《Biochemical and biophysical research communications》2009,383(3):347-26147
Focal adhesion targeting (FAT) domains target the non-receptor tyrosine kinases FAK and Pyk2 to cellular focal adhesion areas, where the signaling molecule paxillin is also located. Here, we report the crystal structures of the Pyk2 FAT domain alone or in complex with paxillin LD4 peptides. The overall structure of Pyk2-FAT is an antiparallel four-helix bundle with an up-down, up-down, right-handed topology. In the LD4-bound FAT complex, two paxillin LD4 peptides interact with two opposite sides of Pyk2-FAT, at the surfaces of the α1α4 and α2α3 helices of each FAT molecule. We also demonstrate that, while paxillin is phosphorylated by Pyk2, complex formation between Pyk2 and paxillin does not depend on Pyk2 tyrosine kinase activity. These experiments reveal the structural basis underlying the selectivity of paxillin LD4 binding to the Pyk2 FAT domain and provide insights about the molecular details which influence the different behavior of these two closely-related kinases. 相似文献
16.
Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. 总被引:74,自引:0,他引:74
L Kornberg H S Earp J T Parsons M Schaller R L Juliano 《The Journal of biological chemistry》1992,267(33):23439-23442
We have recently shown that changes in tyrosine phosphorylation of a 130-kDa protein(s) (pp130) may be involved in integrin signaling (Kornberg, L., Earp, H.S., Turner, C., Prokop, and Juliano, R. L. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 8392-8396). One component of the pp130 protein complex reacts with an antibody generated against p125fak, which is a focal contact-associated tyrosine kinase (Schaller, M.D., Borgman, C. A., Cobb, B. S., Vines, R. R., Reynolds, A. B., and Parsons, J. T. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 5192-5196). Both antibody-mediated integrin clustering and adhesion of KB cells to fibronectin leads to increased tyrosine phosphorylation of p125fak. The phosphorylation of p125fak is coincident with adhesion of cells to fibronectin and is maximal prior to cell spreading. Tyrosine phosphorylation of p125fak is induced when KB cells are allowed to adhere to fibronectin, collagen type IV, or laminin, but is not induced on polylysine. When KB cells are subjected to indirect immunofluorescence microscopy, p125fak colocalizes with talin in focal contacts. These data provide additional evidence that tyrosine kinases are involved in integrin signaling. 相似文献
17.
Khare S Holgren C Samarel AM 《American journal of physiology. Gastrointestinal and liver physiology》2006,291(6):G1100-G1112
Environmental factors, including dietary fats, are implicated in colonic carcinogenesis. Dietary fats modulate secondary bile acids including deoxycholic acid (DCA) concentrations in the colon, which are thought to contribute to the nutritional-related component of colon cancer risk. Here we demonstrate, for the first time, that DCA differentially regulated the site-specific phosphorylation of focal adhesion kinase (FAK). DCA decreased adhesion of HCA-7 cells to the substratum and induced dephosphorylation of FAK at tyrosine-576/577 (Tyr-576/577) and Tyr-925. Tyrosine phosphorylation of FAK at Tyr-397 remained unaffected by DCA stimulation. Interestingly, we found that c-Src was constitutively associated with FAK and DCA actually activated Src, despite no change in FAK-397 and an inhibition of FAK-576 phosphorylation. DCA concomitantly and significantly increased association of tyrosine phosphatase ShP2 with FAK. Incubation of immunoprecipitated FAK, in vitro, with glutathione-S-transferase-ShP2 fusion protein resulted in tyrosine dephosphorylation of FAK in a concentration-dependent manner. Antisense oligodeoxynucleotides directed against ShP2 decreased ShP2 protein levels and attenuated DCA-induced FAK dephosphorylation. Inhibition of FAK by adenoviral-mediated overexpression of FAK-related nonkinase and gene silencing of Shp2 both abolished DCA's effect on cell adhesion, thus providing a possible mechanism for inside-out signaling by DCA in colon cancer cells. Our results suggest that DCA differentially regulates focal adhesion complexes and that tyrosine phosphatase ShP2 has a role in DCA signaling. 相似文献
18.
19.
The non-receptor tyrosine kinase FAK plays a key role at sites of cellular adhesion. It is subject to regulatory tyrosine phosphorylation in response to a variety of stimuli, including integrin engagement after attachment to extracellular matrix, oncogene activation, and growth factor stimulation. Here we use an antibody that specifically recognizes the phosphorylated form of the putative FAK autophosphorylation site, Tyr(397). We demonstrate that FAK phosphorylation induced by integrins during focal adhesion assembly differs from that induced by activation of a temperature-sensitive v-Src, which is associated with focal adhesion turnover and transformation. Specifically, although v-Src induces tyrosine phosphorylation of FAK, there is no detectable phosphorylation of Tyr(397). Moreover, activation of v-Src results in a net decrease in fibronectin-stimulated phosphorylation of Tyr(397), suggesting possible antagonism between v-Src and integrin-induced phosphorylation. Our mutational analysis further indicates that the binding of v-Src to Tyr(397) of FAK in its phosphorylated form, which is normally mediated, at least in part, by the SH2 domain of Src, is not essential for v-Src-induced cell transformation. We conclude that different stimuli can induce phosphorylation of FAK on distinct tyrosine residues, linking specific phosphorylation events to ensuing biological responses. 相似文献