首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of nitrogenous nutrients on endogeneous cytokinins and senescence of tobacco leaves was investigated. Ammonium nitrate was the most effective in retarding senescence and its activity was attributed principally to NH4+ ions. Repeated applications or a continuous supply of ammonium nitrate was required for maximal retardation of tobacco leaf senescence. Ammonium nitrate solution supplied via the petioles reduced the senescence retarding effect of dihydrozeatin applied directly to the laminae of detached tobacco leaves. Ammonium nitrate also elevated the endogenous levels of cytokinins (especially zeatin and dihydrozeatin) particularly in growing tobacco leaves excised from near the apex of the plant. Ammonium nitrate induced retardation of leaf senescence may be mediated at least partly by its effect on foliar cytokinin content.  相似文献   

2.
Cytokinin bases (zeatin and dihydrozeatin) and ribosides (zeatin riboside and dihydrozeatin riboside) were identified as major cytokinins in tobacco xylem sap by radioimmunoassay. When 3H-labelled zeatin riboside or dihydrozeatin riboside were supplied to tobacco plants via the xylem, leaves of differing maturity did not differ appreciably in level of radioactivity or in metabolism of the cytokinin. The major metabolites of zeatin riboside in leaves were adenine, adenosine and adenine nucleotides, whereas that of dihydrozeatin riboside was dihydrozeatin 7-glucoside. Incorporation of [14C]adenine into zeatin was evident in upper green leaves. indicating that young leaves have the capacity to synthesize cytokinins in situ. In contrast, fully expanded green leaves and senescing tobacco leaves exhibited little or no incorporation of [14C]adenine into cytokinins. This difference in cytokinin biosynthetic capacity may contribute to the differing cytokinin levels in leaves of different matirity, and may participate in control of sequential leaf senescence in tobacco.  相似文献   

3.
The cytokinin content of stem tissues, primary genetic tumours (excised from 2-month-old plants) and 3-week-old in vitro cultured genetic tumour tissues derived from Nicotiana glauca (Grah.) × langsdorffii (Weinm.) and N. suaveolens (Lehm.) × langsdorffii (Weinm.) hybrids and stem tissues derived from 2-month-old N. suaveolens and N. langsdorffii plants has been analysed by radioimmunoassay. Stem tissues of tumour-prone hybrids contain high cytokinin levels (3–3.7 nmol g−1). This increase is caused mainly by increased levels of cytokinin nucleotides, particularly those of zeatin nucleotide (0.5 nmol g−1) in stem tissues of parent plants and 2.4 nmol g−1 in stem tissues of hybrids). All other tissues contain lower cytokinin levels (0.7–1.7 nmol g−1). Cytokinin bases and ribosides are major compounds in cultured tumour tissues while the nucleotides are dominant cytokinins in all freshly excised tissues from parent plants and their hybrids. In a separate study, the metabolic fate of supplied [3Hj-zeatin riboside. which is inactivated mainly by sidechain cleavage, has been studied. The results collectively suggest that cytokinins may be involved in tumourigenesis.  相似文献   

4.
Recent advances in cytokinin analysis have made it possible to measure the content of 22 cytokinin metabolites in the tissue of developing tobacco seedlings. Individual types of cytokinins in plants are interconverted to their respective forms by several enzymatic activities (5'-AMP-isopentenyltransferase, adenosine nucleosidase, 5'-nucleotidase, adenosine phosphorylase, adenosine kinase, trans-hydroxylase, zeatin reductase, beta-glucosidase, O-glucosyl transferase, N-glucosyl transferase, cytokinin oxidase). This paper reports modelling and measuring of the dynamics of endogenous cytokinins in tobacco plants grown on media supplemented with isopentenyl adenine (IP), zeatin (Z) and dihydrozeatin riboside (DHZR). Differences in phenotypes generated by the three cytokinins are shown and discussed, and the assumption that substrate concentration drives enzyme kinetics underpinned the construction of a simple mathematical model of cytokinin metabolism in developing seedlings. The model was tested on data obtained from liquid chromatography/tandem mass spectrometry cytokinin measurements on tobacco seedlings grown on Murashige and Skoog agar nutrient medium, and on plants grown in the presence of IP, Z and DHZR. A close match was found between measured and simulated data, especially after a series of iterative parameter searches, in which the parameters were set to obtain the best fit with one of the data sets.  相似文献   

5.
Dihydrozeatin, at 4×10–5 M, delayed the senescence of carnation flowers while tZ, at the same concentration, accelerated it. cis-Zeatin was ineffective. The DHZ derivatives as well as the Z derivatives gave responses very similar to those observed for the parent free bases. While additional experimentation with radiolabelled derivatives is clearly called for, the similarity between the responses observed for the respective derivatives and the free bases, suggests that in the carnation flower there is a great deal of metabolic interconversion.Abbreviations DHZ dihydrozeatin - DHZR ribosyldihydrozeatin - DHZOG glucosyl-O-dihydrozeatin - DHZ9G glucosyl-9-dihydrozeatin - DHZROG glucosyl-O-ribosyldihydrozeatin - cZ cis-zeatin - tZ trans-zeatin - ZR ribosylzeatin - Z9G glucosyl-9-zeatin - ZOG glucosyl-O-zeatin - ZROG glucosyl-O-ribosylzeatin  相似文献   

6.
Age related DNA changes in tobacco (Nicotiana tabacum) leaf nuclei were investigated by Feulgen cytophotometry, thermal denaturation, renaturation, and DNA-DNA hybridization studies during sequential leaf senescence. Cytophotometric Feulgen-DNA comparison measurements between young and senescing nuclei displayed 18% reduction in Feulgen-DNA values, with a corresponding decrease in nuclear area in senescing nuclei. Hydrolysis kinetics indicated that the loss was not due to compactness of the DNA as the curves for older nuclei were consistently lower than curves generated from younger nuclei. DNA loss in senescing nuclei was associated with a decrease in euchromatin or shift from euchromatin to facultative heterochromatin. Purified DNA from young and senescing leaf nuclei did not display different thermal profiles nor did hydroxylapatite chromatography reassociation curves. DNA-DNA hybridization in free solution from young and senescing leaf DNA performed by a Gilford thermo-programmer system indicated that DNA of senescing tobacco nuclei reassociated more slowly than DNA from young nuclei and the mixture of young and senescing leaf DNA displayed intermediate reassociation values. The study indicates that the DNA changes during senescence involve a complex phenomenon which includes the possibility of small single strand nicks undetectable by thermal denaturation, and a loss of small double strand fragments which were detectable only by precise DNA-DNA free solution reassociation and not by hydroxylapatite chromatography reassociation.  相似文献   

7.
Leaf senescence varies greatly among cotton cultivars, possiblydue to their root characteristics, particularly the root-sourcedcytokinins and abscisic acid (ABA). Early-senescence (K1) andlate-senescence (K2) lines, were reciprocally or self-graftedto examine the effects of rootstock on leaf senescence and endogenoushormones in both leaves and xylem sap. The results indicatethat the graft of K1 scion onto K2 rootstock (K1/K2) alleviatedleaf senescence with enhanced photosynthetic (Pn) rate, increasedlevels of chlorophyll (Chl) and total soluble protein (TSP),concurrently with reduced malondialdehyde (MDA) contents inthe fourth leaf on the main-stem. The graft of K2 scion ontoK1 rootstock enhanced leaf senescence with reduced Pn, Chl,and TSP, and increased MDA, compared with their respective self-graftedcontrol plants (K1/K1 and K2/K2). Reciprocally grafted plantsdiffered significantly from their self-grafted control plantsin levels of zeatin and its riboside (Z+ZR), isopentenyl andits adenine (iP+iPA), and ABA, but not in those of dihydrozeatinand its riboside (DHZ+DHZR) in leaves in late season, whichwas consistent with variations in leaf senescence between reciprocallyand self-grafted plants. The results suggest that leaf senescenceis closely associated with reduced accumulation of Z+ZR, andiP+iPA rather than DHZ+DHZR, or enhanced ABA in leaves of cotton.Genotypic variation in leaf senescence may result from the differencein root characteristics, particularly in Z+ZR, iP+iPA, and ABAwhich are regulated by the root system directly or indirectly. Key words: Abscisic acid, cotton, cytokinins, grafting, leaf senescence Received 23 October 2007; Revised 17 January 2008 Accepted 23 January 2008  相似文献   

8.
The process of hyperhydricity in tissue cultured plants of Aloe polyphylla is affected by both applied cytokinins (CKs) and the type of gelling agent used to solidify the medium. Shoots were grown on media with agar or gelrite and supplemented with different concentrations of N6-benzyladenine (BA) or zeatin (0, 5 and 15 μM). Endogenous CKs were measured in in vitro regenerants after an 8-weeks cycle to examine whether the hyperhydricity-inducing effect of exogenous CKs and gelling agents is associated with changes in the endogenous CK content. On media with agar a reduction in hyperhydricity occurred, while the gelrite treatment produced both normal and hyperhydric shoots (HS). The content of endogenous CKs, determined by HPLC-mass spectrometry, in the shoots grown on CK-free media comprised isopentenyladenine-, trans-zeatin- and cis-zeatin-type CKs. The application of exogenous CKs resulted in an increase in the CK content of the shoots. Following application of zeatin, dihydrozeatin-type CKs were also detected in the newly-formed shoots. Application of BA to the media led to a transition from isoprenoid CKs to aromatic CKs in the shoots. Shoots grown on gelrite media contained higher levels of endogenous CKs compared to those on agar media. Total CK content of HS was higher than that of normal shoots grown on the same medium. We suggest that the ability of exogenous CKs and gelrite to induce hyperhydricity in shoots of Aloe polyphylla is at least partially due to up-regulation of endogenous CK levels. However, hyperhydricity is a multifactor process in which different factors intervene.  相似文献   

9.
Journal of Plant Growth Regulation - The metabolism of zeatin and that of 6-benzylaminopurine (BAP) have been compared in oat leaf segments in relation to the markedly differing ability of these...  相似文献   

10.
Approximately 500 urea derivatives and related compounds were tested for ability to retard leaf senescence as measured by chlorophyll retention in radish (Raphanus sativus) leaf discs. Of the 90 compounds found to be active, some had activity at 10?6 M of the same order as kinetin. There was a high correlation between ability to promote chlorophyll retention and initiation of cell division. Highly active compounds had a planar ring and a HNCONH bridge; substitution with a HNCSNH bridge reduced activity and all other tested arrangements of the bridge gave inactive compounds. Substitution of both amino hydrogen atoms on one or both sides of the bridge reduced or removed activity. Some N′-substituted phenyl ureas were highly active. Introduction of a N-phenyl ring to a N-phenyl urea increased activity except where one ring was substituted in the para position with chloro, bromo or iodo. The activities of symmetrical disubstituted ureas were generally less than the corresponding N-monosubstituted derivative. The results suggest that the receptor site for cytokinin activity is the same for senescence retadation and cell division initiation.  相似文献   

11.
Changes in DNA and RNA metabolism, DNA composition and RNA species in callus of tobacco ( Nicotiana rustica L. cv. Gansu Yellow Flower) were investigated during the growth and senescence. DNA and RNA contents remained almost unchanged during the callus growth period, but started to decrease synchronously at the time that callus senescence was initiated. Synthesis of DNA and RNA, as measured by incorporation of [3H]-labelled precursor, increased during the growth period and did not decrease until late in senescence. The activities of DNase and RNase (pH 4.5) increased during the early senescence period in accordance with the decrease in the levels of DNA and RNA, but appeared to decrease during late senescence. These results suggest that the decrease in the levels of DNA and RNA in senescing tobacco callus may stem from the increase in the hydrolytic activities of DNase and RNase (pH 4.5) in the early stage of senescence, and that the slowdown of synthesis in the late senescence period may also be a cause. DNA and RNA electrophoresis showed that a low-molecular-weight satellite DNA band disappeared after the onset of senescence and that the nuclear main band DNA gradually decreased, whereas the high-molecular-weight satellite DNA seemed to undergo no significant changes during the senescence period tested. Of the RNA species, 4–5S RNA was far more susceptible to damage during senescence than 25S and 18S rRNA. This suggests different susceptibilities of different DNA and RNA components to damage during the senescence of tobacco callus or alternatively a highly sequenced degradation of DNA and RNA molecules.  相似文献   

12.
Both abscisic acid (ABA) and jasmonates are known to promote leaf senescence. Since ABA and jasmonates have both chemical and physiological similarities, we are interested to know whether senescence of detached rice leaves induced by methyl jasmonate (MJ) is mediated through an increase in endogenous ABA levels. In darkness, the endogenous level of ABA in detached rice leaves remained unchanged in the first day of incubation in water and increased about 5 times its initial value in the second day. However, the pattern of senescence, as judged by protein loss, was rapid during the first day. MJ significantly promoted senescence of detached rice leaves. Contrary to our expectation, endogenous ABA levels decreased in MJ-treated detached rice leaves. Similar to the effect of MJ, endogenous ABA levels decreased in detached rice leaves which were induced to senesce by treatment with NH4Cl. These results suggest that endogenous ABA levels are not linked to MJ-induced senescence of detached rice leaves.  相似文献   

13.
Levels of isopentenyladenosine and zeatin riboside were monitored in buds and needles of Scots pine ( Pinus sylvestris L.) seedlings grown under controlled climatic conditions and in field-grown trees. Extracts were purified by immunoaffinity chromatography and high-performance liquid chromatography. Cytokinin levels were quantified with an enzyme-linked immunosorbent assay. The cytokinin content was low in buds and needles of dormant seedlings but increased during dormancy release, reaching peak values in buds just before resumption of shoot growth. Samples collected in the field also showed a marked increase in the levels of cytokinins just prior to bud burst. Further, the biological activity of applied cytokinins in activating the dormant buds of Scots pine is shown. The results indicate a probable role of cytokinins in seedlings during dormancy release.  相似文献   

14.
During senescence of primary bean leaves (Phaseolus vulgaris), there are differential changes in the rates at which thylakoid proteins are synthesized. In particular, synthesis of the 32 kD herbicide-binding protein continues throughout senescence, whereas formation of the and subunits of ATPase, the 68 kD photosystem I reaction center polypeptide, cytochrome f, cytochrome b6 and the structural apoprotein of the lightharvesting chlorophyll protein complex (LHCP) declines. Pulse-chase experiments with intact leaves indicated rapid degradation of the 32 kD protein, which is consistent with its known rapid rate of turnover. This degradation was light-dependent and inhibited by DCMU, and the kinetics of degradation were similar for young and senescent membranes. In Coomassie-stained gels, the 68 kD reaction center polypeptide of photosystem I, the and subunits of ATPase and the LHCP were the dominant proteins for all ages of membranes. Western blot analysis indicated that cytochrome f and cytochrome b6 are selectively depleted during senescence. The data have been interpreted as indicating that translational disruptions in both the cytoplasmic and chloroplastic compartments may contribute to the decline in photosynthetic electron transport in the senescing leaf.  相似文献   

15.
6-(2,3,4-Trihydroxy-3-methylbutylamino) purine, trivial name trihydroxy-zeatin (THZ), an oxidation product of zeatin was applied via the epidermis or cut end of Avena leaf segments. THZ did not retard senescence of the segments in either case. With epidermal application THZ remained unmetabolised while the cut end method of application resulted in its metabolism to more polar THZ metabolites of unknown identity. The Avena leaf tissue did not apparently cleave the isoprenoid side chain of the THZ molecule.  相似文献   

16.
Cytokinin-requiring tobacco cells were incubated for 10 h in the presence of a labeled cytokinin. N6-benzyl-[2-3H]Ade, and of [8-14C]Ado. After alkaline hydrolysis of total RNA and fractionation of the resulting nucleotides, 80 per cent of the 3H radioactivity of RNA were recovered as the N6-benzyl-Ado nucleotide, covalently inserted into polynucleotidic chains. The N6-benzyl-Ado nucleotide was not significantly labled by 14C: at most one part of this nucleotide per 10 000 may result from a transfer of the benzyl moiety to adenyl residues in preformed RNA. Thus, the covalent insertion of N6-benzyl-Ade into RNA involves the intact N6-substituted base. Total RNA was fractionated either by sucrose density gradient centrifugation or by polyacrylamide gel electrophoresis. All identified RNA species were shown to contain N6-benzyl-Ade. The insertion frequency, measured as the molecular proportion of N6-benzyl-Ade to the total base content, was 3 to 4 times larger in 25S and 18S rRNA than in 5S and 4S RNA. The amount of N6-benzyl-Ade inserted into cytoplasmic ribosomal RNA accounted for about 90 per cent of the amount incorporated into total RNA. Electrophoresis of denatured RNA in the presence of formamide provided additional evidence that N6-benzyl-Ade was indeed incorporated into RNA molecules.  相似文献   

17.
ARABIDOPSIS A-FIFTEEN (AAF) encodes a plastid protein and was originally identified as a SENESCENCE-ASSOCIATED GENE. Previously, we found that overexpression of AAF (AAF-OX) in Arabidopsis led to accumulated reactive oxygen species and promoted leaf senescence induced by oxidative stress, which was suppressed by a null mutant, ein2-5, in ethylene response pathway. Whether AAF function is involved in ethylene biosynthesis and/or the response pathway remained unknown. Here we show that neither overexpression (AAF-OX) nor a null mutant (aaf-KO) of AAF generates a higher level of ethylene than the wild type and display a typical triple-response phenotype in etiolated seedlings treated with 1-aminocyclopropane-1-carboxylic acid (ACC). Nevertheless, ein2-5 suppresses the phenotypes of early flowering and age-dependent leaf senescence in AAF-OX plants. We reveal that a functional ethylene response is essential for AAF function in leaf senescence and floral induction, but AAF is unlikely a regulatory component integral to the ethylene pathway.  相似文献   

18.
The manipulation of cytokinin levels by senescence-regulated expression of the Agrobacterium tumefaciens ipt gene through its control by the Arabidopsis SAG12 (senescence-associated gene 12) promoter is an efficient tool for the prolongation of leaf photosynthetic activity which potentially can affect plant productivity. In the present study, the efficiency of this approach was tested on wheat (Triticum aestivum L.)-a monocarpic plant characterized by a fast switch from vegetative to reproductive growth, and rapid translocation of metabolites from leaves to developing grains after anthesis. When compared with the wild-type (WT) control plants, the SAG12::ipt wheat plants exhibited delayed chlorophyll degradation only when grown under limited nitrogen (N) supply. Ten days after anthesis the content of chlorophyll and bioactive cytokinins of the first (flag) leaf of the transgenic plants was 32% and 65% higher, respectively, than that of the control. There was a progressive increase in nitrate influx and nitrate reductase activity. However, the SAG12::ipt and the WT plants did not show differences in yield-related parameters including number of grains and grain weight. These results suggest that the delay of leaf senescence in wheat also delays the translocation of metabolites from leaves to developing grains, as indicated by higher accumulation of ((15)N-labelled) N in spikes of control compared with transgenic plants prior to anthesis. This delay interferes with the wheat reproductive strategy that is based on a fast programmed translocation of metabolites from the senescing leaves to the reproductive sinks shortly after anthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号