首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rational design of protein surface is important for creating higher order protein structures, but it is still challenging. In this study, we designed in silico the several binding interfaces on protein surfaces that allow a de novo protein–protein interaction to be formed. We used a computer simulation technique to find appropriate amino acid arrangements for the binding interface. The protein–protein interaction can be made by forming an intermolecular four-helix bundle structure, which is often found in naturally occurring protein subunit interfaces. As a model protein, we used a helical protein, YciF. Molecular dynamics simulation showed that a new protein–protein interaction is formed depending on the number of hydrophobic and charged amino acid residues present in the binding surfaces. However, too many hydrophobic amino acid residues present in the interface negatively affected on the binding. Finally, we found an appropriate arrangement of hydrophobic and charged amino acid residues that induces a protein–protein interaction through an intermolecular four-helix bundle formation.  相似文献   

2.
Hepatitis C virus (HCV) F protein is encoded by the +1 reading frame of the viral genome. It overlaps with the core protein coding sequence, and multiple mechanisms for its expression have been proposed. The full-length F protein that is synthesized by translational ribosomal frameshift at codons 9 to 11 of the core protein sequence is a labile protein. By using a combination of genetic, biochemical, and cell biological approaches, we demonstrate that this HCV F protein can bind to the proteasome subunit protein α3, which reduces the F-protein level in cells in a dose-dependent manner. Deletion-mapping analysis identified amino acids 40 to 60 of the F protein as the α3-binding domain. This α3-binding domain of the F protein together with its upstream sequence could significantly destabilize the green fluorescent protein, an otherwise stable protein. Further analyses using an F-protein mutant lacking lysine and a cell line that contained a temperature-sensitive E1 ubiquitin-activating enzyme indicated that the degradation of the F protein was ubiquitin independent. Based on these observations as well as the observation that the F protein could be degraded directly by the 20S proteasome in vitro, we propose that the full-length HCV F protein as well as the F protein initiating from codon 26 is degraded by an ubiquitin-independent pathway that is mediated by the proteasome subunit α3. The ability of the F protein to bind to α3 raises the possibility that the HCV F protein may regulate protein degradation in cells.  相似文献   

3.
Abstract

Different approaches to study protein surface fractality are considered. An approach based on analysis of surface versus molecular weight dependence is shown to be an informative tool for investigation of protein surface behaviour. An evidence for protein surface fractality, obtained with the use of this analysis from the data of both NMR measurements in protein solutions and computer analysis of protein structures, is presented. Obtained value of fractal dimension of protein surface (d s ? 2.2) is in a good agreement with the results of conventional approach (with variation of yardstick length) to protein surface fractality. A conclusion is made that surface enlargement due to the rise of protein molecular weight is accompanied by the increase of maximum scale of irregularities on protein surface. Possible effect of surface fractality on hydrodynamic characteristics of protein molecules in solution is discussed.  相似文献   

4.
Under most conditions of growth, the most abundant protein in the outer membrane of most strains of Escherichia coli is a protein designated as “protein 1” or “matrix protein”. In E. coli B, this protein has been shown to be a single polypeptide with a molecular mass of 36,500 and it may account for more than 50% of the total outer membrane protein. E. coli K-12 contains a very similar, although probably not identical, species of protein 1. Some pathogenic E. coli strains contain very little protein 1 and, in its place, make a protein designated as protein 2 which migrates faster on alkaline polyacrylamide gels containing sodium dodecyl sulfate and which gives a different spectrum of CNBr peptides. An E. coli K-12 strain which had been mated with a pathogenic strain was found to produce protein 2, and a temperate bacteriophage was isolated from this K-12 strain after induction with UV light. This phage, designated as PA-2, is similar in morphology and several other properties to phage lambda. When strains of E. coli K-12 are lysogenized by phage PA-2, they produce protein 2 and very little protein 1. Adsorption to lysogenic strains grown under conditions where they produce little protein 1 and primarily protein 2 is greatly reduced as compared to non-lysogenic strains which produce only protein 1. However, when cultures are grown under conditions of catabolite repression, protein 2 is reduced and protein 1 is increased, and lysogenic and non-lysogenic cultures grown under these conditions exhibit the same rate of adsorption. Phage PA-2 does not adsorb to E. coli B, which appears to have a slightly different protein 1 from K-12. These results suggest that protein 1 is the receptor for PA-2, and that protein 2 is made to reduce the superinfection of lysogens.  相似文献   

5.
The ccd locus contributes to the stability of plasmid F by post-segregational killing of plasmid-free bacteria. The ccdB gene product is a potent cell-killing protein and its activity is negatively regulated by the CcdA protein, in this paper, we show that the CcdA protein is unstable and that the degradation of CcdA is dependent on the Lon protease. Differences in the stability of the killer CcdB protein and its antidote CcdA are the key to post-segregational killing. Because the half-life of active CcdA protein is shorter than that of active CcdB protein, persistence of the CcdB protein leads to the death of plasmid-free bacterial segregants.  相似文献   

6.
Regulated protein degradation is crucial for virtually every cellular function. Much of what is known about the molecular mechanisms and genetic requirements for eukaryotic protein degradation was initially established in Saccharomyces cerevisiae. Classical analyses of protein degradation have relied on biochemical pulse-chase and cycloheximide-chase methodologies. While these techniques provide sensitive means for observing protein degradation, they are laborious, time-consuming, and low-throughput. These approaches are not amenable to rapid or large-scale screening for mutations that prevent protein degradation. Here, a yeast growth-based assay for the facile identification of genetic requirements for protein degradation is described. In this assay, a reporter enzyme required for growth under specific selective conditions is fused to an unstable protein. Cells lacking the endogenous reporter enzyme but expressing the fusion protein can grow under selective conditions only when the fusion protein is stabilized (i.e. when protein degradation is compromised). In the growth assay described here, serial dilutions of wild-type and mutant yeast cells harboring a plasmid encoding a fusion protein are spotted onto selective and non-selective medium. Growth under selective conditions is consistent with degradation impairment by a given mutation. Increased protein abundance should be biochemically confirmed. A method for the rapid extraction of yeast proteins in a form suitable for electrophoresis and western blotting is also demonstrated. A growth-based readout for protein stability, combined with a simple protocol for protein extraction for biochemical analysis, facilitates rapid identification of genetic requirements for protein degradation. These techniques can be adapted to monitor degradation of a variety of short-lived proteins. In the example presented, the His3 enzyme, which is required for histidine biosynthesis, was fused to Deg1-Sec62. Deg1-Sec62 is targeted for degradation after it aberrantly engages the endoplasmic reticulum translocon. Cells harboring Deg1-Sec62-His3 were able to grow under selective conditions when the protein was stabilized.  相似文献   

7.
The properties of anEscherichia coli K-12 mutant are described which seemingly produces a “new” major outer membrane protein with an apparent molecular weight of 40000. This 40K protein was purified and its cyanogen bromide (CNBr) fragments were compared with those of several known major outer membrane proteins. A similarity was found between the CNBr fragments of the 40K protein and those of the OmpF protein (molecular weight 37000). In addition, the 40K protein was found to be regulated exactly like the OmpF protein, and the mutation which causes the production of the 40K protein has been localized in (or very close to) theompF gene. It is concluded that the 40K protein is a mutant form of the OmpF protein. The results provide additional evidence that theompF gene at minute 21 is the structural gene for the OmpF protein.  相似文献   

8.
Major Vault Protein of Electric Ray is a Phosphoprotein   总被引:1,自引:0,他引:1  
The major vault protein is the predominant member of a large cytosolic ribonucleoprotein particle, named vaults. Vaults are abundant in nerve terminals of the electric organ of Torpedo marmorata.Negative staining of isolated vaults reveals particle dimensions of 45 × 65 nm in size. Comparison of the major vault protein (MVP 100) from the two electric ray species Torpedo marmorataand Discopyge ommatareveals few microheterogeneities in amino acid sequence. Potential phosphorylation sites for various protein kinases are highly conserved. Phosphorylation studies demonstrate that the major vault protein of Torpedois a substrate of various protein kinases. MVP100 is phosphorylated by protein tyrosine kinase in vivo and protein kinase C and casein kinase II in vitro. Inhibitors and activators of protein kinases specifically modulate the phosphorylation of MVP 100.  相似文献   

9.

Background  

Protein conformation and protein/protein interaction can be elucidated by solution-phase Hydrogen/Deuterium exchange (sHDX) coupled to high-resolution mass analysis of the digested protein or protein complex. In sHDX experiments mutant proteins are compared to wild-type proteins or a ligand is added to the protein and compared to the wild-type protein (or mutant). The number of deuteriums incorporated into the polypeptides generated from the protease digest of the protein is related to the solvent accessibility of amide protons within the original protein construct.  相似文献   

10.
Several mutations in gene B of phage S13 appear to shorten the B protein by elimination of an N-terminal fragment, without destroying the B protein function. The shortened B protein resulting from each of these mutations can block the unique DNA-nicking properties of the S13 gene A protein. Because of the block in gene A function, normal gene B protein may have a function in phage DNA synthesis in addition to its known role in catalyzing capsid assembly.From gel electrophoresis the mutant B protein is estimated to be shorter than the normal S13 B protein by 1720 ± 70 daltons and is therefore believed to be an internal reinitiation fragment. The reinitiated fragments are functional and are made in about twice the amount of the normal B protein.The phage mutants which yield the reinitiation fragments are double mutants, each phage containing the same gene B nonsense mutation and each appearing to contain a different compensating gene B mutation. Various data support the assumption that the compensating mutations are frame-shifts, including the fact that suppression does not restore the normal-sized B protein. The reinitiation is assumed to occur at a pre-existing out-of-phase initiator codon, near the nonsense triplet; the correct reading frame would then be restored by each of the several different compensating mutations.The position of the normal S13 B protein in the gel electrophoresis pattern has been located both by elimination and shifting of the B peak, using appropriate amber mutants. The molecular weight of the S13 B protein is about 17,200, and is 2100 daltons less than the B protein of phage φX174; the S13 B protein can nevertheless substitute for the φX 174 B protein. Thus substantial portions of the B protein can be deleted without destroying its function.  相似文献   

11.
The effect that Escherichia coli single-stranded DNA binding (SSB) protein has on the single-stranded DNA-dependent ATPase activity of RecA protein is shown to depend upon a number of variables such as order of addition, magnesium concentration, temperature and the type of single-stranded DNA substrate used. When SSB protein is added to the DNA solution prior to the addition of RecA protein, a significant inhibition of ATPase activity is observed. Also, when SSB protein is added after the formation of a RecA protein-single-stranded DNA complex using either etheno M13 DNA, poly(dA) or poly(dT), or using single-stranded phage M13 DNA at lower temperature (25 °C) and magnesium chloride concentrations of 1 mm or 4 mm, a time-dependent inhibition of activity is observed. These results are consistent with the conclusion that SSB protein displaces the RecA protein from these DNA substrates, as described in the accompanying paper. However, if SSB protein is added last to complexes of RecA protein and single-stranded M13 DNA at elevated temperature (37 °C) and magnesium chloride concentrations of 4 mm or 10 mm, or to poly(dA) and poly(dT) that was renatured in the presence of RecA protein, no inhibition of ATPase activity is observed; in fact, a marked stimulation is observed for single-stranded M13 DNA. A similar effect is observed if the bacteriophage T4-coded gene 32 protein is substituted for SSB protein. The apparent stoichiometry of DNA (nucleotides) to RecA protein at the optimal ATPase activity for etheno M13 DNA, poly(dA) and poly(dT) is 6(±1) nucleotides per RecA protein monomer at 4 mm-MgCl2 and 37 °C. Under the same conditions, the apparent stoichiometry obtained using single-stranded M13 DNA is 12 nucleotides per RecA protein monomer; however, the stoichiometry changes to 4.5 nucleotides per RecA protein monomer when SSB protein is added last. In addition, a stoichiometry of four nucleotides per RecA protein can be obtained with single-stranded M13 DNA in the absence of SSB protein if the reactions are carried out in 1 mm-MgCl2. These data are consistent with the interpretation that secondary structure within the natural DNA substrate limits the accessibility of RecA protein to these regions. The role of SSB protein is to eliminate this secondary structure and allow RecA protein to bind to these previously inaccessible regions of the DNA. In addition, our results have disclosed an additional property of the RecA protein-single-stranded DNA complex: namely, in the presence of complementary base-pairing and at elevated temperatures and magnesium concentrations, a unique RecA protein-DNA complex forms that is resistant to inhibition by SSB protein.  相似文献   

12.
Proteins of the Lsm family, including eukaryotic Sm proteins and bacterial Hfq, are key players in RNA metabolism. Little is known about the archaeal homologues of these proteins. Therefore, we characterized the Lsm protein from the haloarchaeon Haloferax volcanii using in vitro and in vivo approaches. H. volcanii encodes a single Lsm protein, which belongs to the Lsm1 subfamily. The lsm gene is co-transcribed and overlaps with the gene for the ribosomal protein L37e. Northern blot analysis shows that the lsm gene is differentially transcribed. The Lsm protein forms homoheptameric complexes and has a copy number of 4000 molecules/cell. In vitro analyses using electrophoretic mobility shift assays and ultrasoft mass spectrometry (laser-induced liquid bead ion desorption) showed a complex formation of the recombinant Lsm protein with oligo(U)-RNA, tRNAs, and an small RNA. Co-immunoprecipitation with a FLAG-tagged Lsm protein produced in vivo confirmed that the protein binds to small RNAs. Furthermore, the co-immunoprecipitation revealed several protein interaction partners, suggesting its involvement in different cellular pathways. The deletion of the lsm gene is viable, resulting in a pleiotropic phenotype, indicating that the haloarchaeal Lsm is involved in many cellular processes, which is in congruence with the number of protein interaction partners.  相似文献   

13.
The transport of histidine in the gram negative bacterium S. typhimurium has been studied over a number of years and found to occur through five transport systems (Ames, 1972). Of these, the one with the highest affinity has been studied in detail from the genetic, physiological and biochemical point of view. This system, known as the high-affinity histidine permease, is composed of two subsystems, the J-P and K-P systems, which have a component in common, the P protein, presumed to be membrane-bound. The J-P system, moreover, is known to require the presence of a periplasmic histidine-binding protein, the J protein. The J protein is coded for by the hisJ gene and the P protein is coded for by the hisP gene. Both of these genes have been mapped at 75 min on the Salmonella chromosomal map. Adjacent to them is a regulatory gene, the dhuA gene. The periplasmic histidine-binding protein J has been shown to interact directly with the second component of transport, the P protein (Ames and Spudich, 1976). In accordance with this, histidine-binding protein J has been shown to contain, besides the histidine-binding site, a second site, essential for function, the interaction site (Kustu and Ames, 1974). We have recently shown that a mutant J protein with a defective interaction site but an intact histidine-binding site cannot function in histidine transport, unless an appropriate compensating mutation is introduced in the P protein. The interaction between the J and P proteins is an obligatory step in transport. The mutation in the interaction site of the J protein has been shown to map in the hisJ gene, and the compensating supressor mutation in the P protein has been shown to map in the hisP gene. Our contention that the J and P proteins engage in a functional interaction assumes further strength from other studies on protein-protein interaction in bacteriophage development and in ribosomal structure. Among the possible functions of the J-P interaction in histidine transport, a likely one is the transmission of information to the P protein, concerning whether or not the histidine-binding site on the J protein is occupied. Appropriate conformational changes then can occur in either the J or the P protein, or both, such that the histidine is released in the correct location and direction on the inside of the cell. This could occur either by a pore-formation mechanism or by binding-site translocation. Another alternative is that the P protein is part of an energy transducing mechanism in which energy is transmitted to the J protein, through the interaction site, as a prerequisite for the J protein participation in translocation. Among the interesting findings coming out of this work, is also the fact that the P protein performs a central function in transport being involved in the permeation of other substrates besides histidine. It is likely that other binding proteins besides the J protein require the P protein. Thus an interesting question which we are trying to answer at present is whether the P protein has separate interaction sites for each of these other binding proteins requiring its function, or whether they all interact at one common site.  相似文献   

14.
Tlusty's topological rate distortion analysis of the genetic code is applied to protein symmetries and protein folding rates. Unlike the genetic case, numerous thermodynamically accessible ‘protein folding codes’ can be identified from empirical classifications. Folding rates follow from a topologically driven rate distortion argument, a model that can, in principle, be extended to intrinsically disordered proteins. The elaborate cellular regulatory machinery of the endoplasmic reticulum and heat shock proteins is needed to prevent transition between the various thermodynamically ‘natural’ sets of hydrophobic-core protein conformations, and its corrosion by aging would account for the subsequent onset of many protein folding disorders. These results imply markedly different evolutionary trajectories for the genetic and protein folding codes, and suggest that the ‘protein folding code’ is really a complicated composite, distributed across protein production and a cellular, or higher, regulatory apparatus acting as a canalizing catalyst that drives the system to converge on particular transitive components within a significantly larger ‘protein folding groupoid’.  相似文献   

15.
There is general agreement that the connexin43 gap junction protein is a substrate for phosphorylation by protein kinase C but there is no similar consensus regarding the action of protein kinase A. Our previous studies demonstrated that channels formed by connexin43 were reversibly gated in response to microinjected protein kinase A and protein kinase C, but we did not determine whether these effects involved direct action on the connexin43 protein. Using a combination of in vivo metabolic labeling and in vitro phosphorylation of recombinant protein and synthetic peptides, we now find that connexin43 is a relatively poor substrate for purified protein kinase A compared to protein kinase C, but that phosphorylation can be accelerated by 8-Br-cAMP (8-bromoadenosine 3,5-cyclic monophosphate) which also enhances connexin43 synthesis but at a much slower rate than phosphorylation. Phosphorylation of a critical amino acid, Ser364, by protein kinase A, appears to be necessary for subsequent multiple phosphorylations by protein kinase C. However, protein kinase C can phosphorylate connexin43 at a reduced level in the absence of prior phosphorylation. The results suggest that the correct regulation of channels formed by connexin43 may require sequential phosphorylations of this protein by protein kinase A and protein kinase C.  相似文献   

16.
The COVID‐19 epidemic is one of the most influential epidemics in history. Understanding the impact of coronaviruses (CoVs) on host cells is very important for disease treatment. The SARS‐CoV‐2 envelope (E) protein is a small structural protein involved in many aspects of the viral life cycle. The E protein promotes the packaging and reproduction of the virus, and deletion of this protein weakens or even abolishes the virulence. This review aims to establish new knowledge by combining recent advances in the study of the SARS‐CoV‐2 E protein and by comparing it with the SARS‐CoV E protein. The E protein amino acid sequence, structure, self‐assembly characteristics, viroporin mechanisms and inhibitors are summarized and analyzed herein. Although the mechanisms of the SARS‐CoV‐2 and SARS‐CoV E proteins are similar in many respects, specific studies on the SARS‐CoV‐2 E protein, for both monomers and oligomers, are still lacking. A comprehensive understanding of this protein should prompt further studies on the design and characterization of effective targeted therapeutic measures.  相似文献   

17.
Fate of Maturation Protein during Infection by Coliphage MS2   总被引:6,自引:0,他引:6  
RNA coliphages contain two species of protein: coat protein, the major structural component; and maturation protein, which is probably present in only one copy per virion1–3. The precise function of maturation protein is uncertain, but it is required for phage adsorption to F-pili of the E. coli host4 and for reconstitution of infectious phage5. In infected cells, newly synthesized maturation protein is found associated with viral RNA6, suggesting that an RNA-maturation protein complex may be present in virus particles.  相似文献   

18.
A procedure is described for the acylation of E. coli acyl carrier protein by employing a crude extract of developing safflower seeds. This extract contains both the de, novo system which synthesizes palmityl-acyl carrier protein from [14C]malonate, ATP, CoA, Mg+2, and E. coli acyl carrier protein, and the elongation system which converts palmityl-acyl carrier protein to stearyl-acyl carrier protein. Stearyl-acyl carrier protein is purified by a four-step procedure consisting of acid precipitation, ammonium sulfate fractionation, gel filtration, and DEAE-cellulose chromatography. The purification yields a mixture of stearyl-acyl carrier protein and unreacted acyl carrier protein-SH, which can only be separated by 0.1% SDS-12% polyacrylamide gel electrophoresis.The enzymatically prepared stearyl-acyl carrier protein has a one to one ratio of [14C]stearyl group to thioester, and it is consistently a substrate of high reactivity with stearyl-acyl carrier protein desaturase in sharp contrast to chemically acylated acyl carrier protein which invariably was of low substrate reactivity. Evidence confirming the identity of the product is presented.  相似文献   

19.
Summary The isolation and characterization of two mutants of Escherichia coli K12 with an altered outer membrane protein c is described. The first mutant, strain CE1151, was isolated as a bacteriophage Mel resistant strain which contains normal levels of protein c. Mutant cells adsorbed the phage with a strongly decreased rate. Complexes of purified nonheat modified wild type protein c and wild type lipopolysaccharide inactivated phage Me1, indicating that these components are required for receptor activity for phage Me1. When wild type protein c was replaced by protein c of strain CE1151, the receptorcomplex was far less active, showing that protein c of strain CE1151 is altered. The second mutant produces a protein c with a decreased electrophoretic mobility, designated as protein c*. An altered apparent molecular weight was also observed for one or more fragments obtained after fragmentation of the mutant protein with cyanogen bromide, trypsin and chymotrypsin. Alteration of protein c was not accompanied by a detectable alteration in protein b or its fragments. Both mutations are located at minute 48 of the Escherichia coli K12 linkage map. The results strongly suggest that meoA is the structural gene for protein c.  相似文献   

20.
Membrane protein assembly is a fundamental process in all cells. The membrane-bound Rieske iron-sulfur protein is an essential component of the cytochrome bc1 and cytochrome b6f complexes, and it is exported across the energy-coupling membranes of bacteria and plants in a folded conformation by the twin arginine protein transport pathway (Tat) transport pathway. Although the Rieske protein in most organisms is a monotopic membrane protein, in actinobacteria, it is a polytopic protein with three transmembrane domains. In this work, we show that the Rieske protein of Streptomyces coelicolor requires both the Sec and the Tat pathways for its assembly. Genetic and biochemical approaches revealed that the initial two transmembrane domains were integrated into the membrane in a Sec-dependent manner, whereas integration of the third transmembrane domain, and thus the correct orientation of the iron-sulfur domain, required the activity of the Tat translocase. This work reveals an unprecedented co-operation between the mechanistically distinct Sec and Tat systems in the assembly of a single integral membrane protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号