首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrahydrophobicity indicates a non-adhesive default state in gecko setae   总被引:1,自引:0,他引:1  
Geckos may represent the world’s most demanding adhesives application. The adhesive setae on the toes of climbing geckos must adhere strongly yet avoid fouling or attachment at inappropriate times. We tested the hypothesis that gecko setae are non-adhesive in their unloaded default state by comparing the water droplet contact angle (θ) of isolated setal arrays to the smooth surface of eye spectacle scales of tokay geckos (Gekko gecko). At equilibrium, θ was 98.3 ± 3.4° in spectacle scales of live geckos and 93.3 ± 3.5° in isolated spectacles. Isolated setal arrays were ultrahydrophobic, with θ of 160.6 ± 1.3° (means ± SD). The difference in θ of setal arrays and smooth spectacles indicates a very low contact fraction. Using Cassie’s law of surface wettability, we infer that less than 6.6% of the surface of unloaded setae is solid and at least 93.4% is air space. We calculated that the contact fraction must increase from 6.6% in the unloaded state to 46% in the loaded state to account for previously measured values of adhesion. Thus gecko setae may be non-sticky by default because only a very small contact fraction is possible without mechanically deforming the setal array.  相似文献   

2.

Background

Many arachnids possess adhesive pads on their feet that help them climb smooth surfaces and capture prey. Spider and gecko adhesives have converged on a branched, hairy structure, which theoretically allows them to adhere solely by dry (solid-solid) intermolecular interactions. Indeed, the consensus in the literature is that spiders and their smooth-padded relatives, the solifugids, adhere without the aid of a secretion.

Methodology and Principal Findings

We investigated the adhesive contact zone of living spiders, solifugids and mites using interference reflection microscopy, which allows the detection of thin liquid films. Like insects, all the arachnids we studied left behind hydrophobic fluid footprints on glass (mean refractive index: 1.48–1.50; contact angle: 3.7–11.2°). Fluid was not always secreted continuously, suggesting that pads can function in both wet and dry modes. We measured the attachment forces of single adhesive setae from tarantulas (Grammostola rosea) by attaching them to a bending beam with a known spring constant and filming the resulting deflection. Individual spider setae showed a lower static friction at rest (26%±2.8 SE of the peak friction) than single gecko setae (Thecadactylus rapicauda; 96%±1.7 SE). This may be explained by the fact that spider setae continued to release fluid after isolation from the animal, lubricating the contact zone.

Significance

This finding implies that tarsal secretions occur within all major groups of terrestrial arthropods with adhesive pads. The presence of liquid in an adhesive contact zone has important consequences for attachment performance, improving adhesion to rough surfaces and introducing rate-dependent effects. Our results leave geckos and anoles as the only known representatives of truly dry adhesive pads in nature. Engineers seeking biological inspiration for synthetic adhesives should consider whether model species with fluid secretions are appropriate to their design goals.  相似文献   

3.
Adhesive toe pads of geckos house modified components of vascular and/or connective tissues that promote conformity of the setal fields with the locomotor substratum. Similar modifications have been claimed for the digits of Anolis, but evidence for them is not compelling. Angiographic and histological investigations of Anolis failed to identify any evidence of either an intralamellar vascular reticular network or a central sinus. Instead, their vascularity more closely resembles that of lizards in general than that of pad‐bearing geckos. The loose connective tissue of the toe pads likely contributes to their general pliability and flexibility, promoting localized compliance with the substratum. Through the shedding cycle, the lamellae change shape as the replacing setae elongate. The outer epidermal generation lacunar cells on the inner lamellar faces simultaneously hypertrophy, providing for compatibility between overlapping lamellae, enabling reciprocity between them. This contributes to continuing compliance of the setal fields with the substratum. Overall, digital structure and attachment and release kinematics of the toe pads of Anolis are very similar to those of geckos exhibiting an incipient adhesive mechanism. Both lack major anatomical specializations for promoting conformity of the setae with the locomotor substratum beyond those of the seta‐bearing portions of the epidermis.  相似文献   

4.
Flies (Brachycera) have adhesive pads called pulvilli at the terminal tarsomere. The pulvilli are covered by tenent setae, sometimes termed tenent hairs, which serve to increase the actual area of attachment to the surface. By using transmission and scanning electron microscopy it is shown that proximal and distal tenent setae have different ultrastructures. The design of distal adhesive setae is adapted for the release of adhesive substances close to the area of contact. It is concluded that secretion injection is precisely targeted under the distal tip of a single seta.  相似文献   

5.
Geckos with subdigital adhesive pads can scale smooth vertical surfaces in defiance of gravity. The deployment of the adhesive system is activated by the musculoskeletal system during active traverses of such surfaces, but adhesion on such substrata can also be achieved by passive means, with the body weight of the gecko applying tensile loading to the adhesive setae, maintaining prolonged, static contact with the surface. To investigate whether passively induced adhesion is employed by geckos holding station on smooth vertical surfaces, we investigated the magnitude of shear force generation for the manus and pes, and the positioning of the limb segments and digits in Chondrodactylus bibronii in freely selected resting postures (head‐up, head‐down and facing laterally to the left and right). Our results indicate that different subsets of digits occupy positions consistent with them being passively loaded in different body orientations. Limb segment and digit orientation are consistent within, and differ between, the resting postures, and relatively few of the 20 digits are positioned to take advantage of gravitationally induced loading in any posture. The pedal digits have greater adhesive potential than the manual ones and, more frequently, capitalize on passive loading than do manual digits. This is especially evident in the commonly adopted head‐down resting posture.  相似文献   

6.
The striking morphological convergence of hair-like integumentary derivatives of lizards and arthropods (spiders and insects) demonstrates the importance of such features for enhancing purchase on the locomotor substrate. These pilose structures are responsible for the unique tractive abilities of these groups of animals, enabling them to move with seeming ease on overhanging and inverted surfaces, and to traverse inclined smooth substrates. Three groups of lizards are well known for bearing adhesion-promoting setae on their digits: geckos, anoles and skinks. Similar features are also found on the ventral subdigital and distal caudal skin of chameleons. These have only recently been described in any detail, and structurally and functionally are much less well understood than are the setae of geckos and anoles. The seta-like structures of chameleons are not branched (a characteristic of many geckos), nor do they terminate in spatulate tips (which is characteristic of geckos, anoles and skinks). They are densely packed and have attenuated blunt, globose tips or broad, blade-like shafts that are flattened for much of their length. Using a force transducer, we tested the hypothesis that these structures enhance friction and demonstrate that the pilose skin has a greater frictional coefficient than does the smooth skin of these animals. Our results are consistent with friction being generated as a result of side contact of the integumentary filaments. We discuss the evolutionary and functional implications of these seta-like structures in comparison with those typical of other lizard groups and with the properties of seta-mimicking synthetic structures.  相似文献   

7.
Many researchers have reported that the robust adhesion that enables geckos to move quickly and securely across a range of vertical and horizontal surfaces is provided by the hierarchical structure of their feet (i.e. lamellae, setae, spatulae, etc.). Maintaining this robust adhesion requires an intimate contact between the terminal tips of the spatulae and the surface. The aim of this study was to investigate the effect on the adhesive properties of the spatulae when a particle becomes trapped at the contact surface. Using the Johnson, Kendall and Roberts (JKR) theory, a model was constructed to assist in the analysis of the interactions between the spatula tip, the particle and the surface. The results showed that the keratin (the natural material of the spatula) provides a robust system for adhesion even when there is a particle in the contact area, and the effective contact area of spatulae will be 80%. When the particle is significantly harder than the surface, the adhesion properties of the contact surface influenced by the particle will be more obvious. The results also reveal that the generated adhesion is considerably higher when the spatula is in contact with a softer surface, such as wood or concrete, rather than a hard surface, such as glass or SiO2.  相似文献   

8.
Many animals possess adhesive pads on their feet,which are able to attach to various substrates while controlling adhesive forces during locomotion.This review article studies the morphology of adhesive devices in animals,and the physical mechanisms of wet adhesion and dry adhesion.The adhesive pads are either ‘smooth' or densely covered with special adhesive setae.Smooth pads adhere by wet adhesion,which is facilitated by fluid secreted from the pads,whereas hairy pads can adhere by dry adhesion or wet adhesion.Contact area,distance between pad and substrate,viscosity and surface tension of the liquid filling the gap between pad and substrate are the most important factors which determine the wet adhesion.Dry adhesion was found only in hairy pads,which occurs in geckos and spiders.It was demonstrated that van der Waals interaction is the dominant adhesive force in geckos' adhesion.The bio-inspired applications derived from adhesive pads are also reviewed.  相似文献   

9.
Lizards commonly climb in complex three-dimensional habitats, and gekkotans are particularly adept at doing this by using an intricate adhesive system involving setae on the ventral surface of their digits. However, it is not clear whether geckos always deploy their adhesive system, given that doing so may result in decreased (i.e. reduction in speed) locomotor performance. Here, we investigate circumstances under which the adhesive apparatus of clinging geckos becomes operative, and examine the potential trade-offs between speed and clinging. We quantify locomotor kinematics of a gecko with adhesive capabilities (Tarentola mauritanica) and one without (Eublepharis macularius). Whereas, somewhat unusually, E. macularius did not suffer a decrease in locomotor performance with an increase in incline, T. mauritanica exhibited a significant decrease in speed between the level and a 10° incline. We demonstrate that this results from the combined influence of slope and the deployment of the adhesive system. All individuals kept their digits hyperextended on the level, but three of the six individuals deployed their adhesive system on the 10° incline, and they exhibited the greatest decrease in velocity. The deployment of the adhesive system was dependent on incline, not surface texture (600 grit sandpaper and Plexiglas), despite slippage occurring on the level Plexiglas substrate. Our results highlight the type of sensory feedback (gravity) necessary for deployment of the adhesive system, and the trade-offs associated with adhesion.  相似文献   

10.
Although the phenomenon of adhesion in geckos has been intensively studied for over 200 years, our understanding of how the morphological apparatus associated with this arose is less clear. Indeed, whether or not all of the intricate morphological hierarchy that is implicated in the attachment and removal of the adhesive setae originated at the same time is unknown. To explore whether setae may have arisen prior to the other parts of this structural hierarchy, we undertook morphological observations of Gonatodes, an ancestrally padless, sphaerodatyline genus known to exhibit the expression of incipient subdigital pads in some species. Focusing on this geographically and morphologically well‐circumscribed genus, for which intraspecific relationships are adequately known and ecology is quite well documented, allowed us to deduce trends in digit proportions, shape, scalation, and skeletal structure, and associate these with the micro‐ornamentation of the subdigital surfaces. Our findings indicate that in Gonatodes, setae capable of inducing adhesion are present without the modifications of the digital musculotendinous, circulatory and skeletal systems that are generally considered to be necessary for the operation of a functional adhesive apparatus. The acquisition of these latter characteristics (independently in many lineages of gekkotans, and incipiently so in Anolis) may have been preceded by a suite of modifications of the digits that enhanced static clinging in relation to sit‐and‐wait predation and the ability to take refuge on surfaces unavailable to other taxa. These possibilities await further testing. J. Morphol. 276:1311–1332, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
The study of the adhesion of millions of setae on the toes of geckos has been advanced in recent years with the emergence of new technology and measurement methods. The theory of the mechanism of adhesion by van der Waals forces is now accepted and broadly understood. However, this paper presents limitations of this theory and gives a new hypothesis of the biomechanism of gecko adhesion. The findings are obtained through measurements of the magnitude of the adhesion of setae under three different conditions, to show the close relationship between adhesion and status of the setae. They are reinforced by demonstrating two setal structures, follicle cells and hair, the former making the setae capable of producing bioelectrical charges, which play an important role in attachment and detachment processes. It is shown that the abundant muscular tissues at the base of the setae cells, which are controlled by peripheral nerves, are instrumental in producing the foot movement involved in attachment and detachment. Our study will further uncover the adhesion mechanism of geckos, and provide new ideas for designing and fabricating synthetic setae.  相似文献   

12.
For the first time, we report the remarkable ability of the terrestrial leaf beetle Gastrophysa viridula to walk on solid substrates under water. These beetles have adhesive setae on their feet that produce a secretory fluid having a crucial role in adhesion on land. In air, adhesion is produced by capillary forces between the fluid-covered setae and the substrate. In general, capillary forces do not contribute to adhesion under water. However, our observations showed that these beetles may use air bubbles trapped between their adhesive setae to walk on flooded, inclined substrata or even under water. Beetle adhesion to hydrophilic surfaces under water was lower than that in air, whereas adhesion to hydrophobic surfaces under water was comparable to that in air. Oil-covered hairy pads had a pinning effect, retaining the air bubbles on their feet. Bubbles in contact with the hydrophobic substrate de-wetted the substrate and produced capillary adhesion. Additional capillary forces are generated by the pad's liquid bridges between the foot and the substrate. Inspired by this idea, we designed an artificial silicone polymer structure with underwater adhesive properties.  相似文献   

13.
When the adhesive toe pads of geckos become wet, they become ineffective in enabling geckos to stick to substrates. This result is puzzling given that many species of gecko are endemic to tropical environments where water covered surfaces are ubiquitous. We hypothesized that geckos can recover adhesive capabilities following exposure of their toe pads to water by walking on a dry surface, similar to the active self-cleaning of dirt particles. We measured the time it took to recover maximum shear adhesion after toe pads had become wet in two groups, those that were allowed to actively walk and those that were not. Keeping in mind the importance of substrate wettability to adhesion on wet surfaces, we also tested geckos on hydrophilic glass and an intermediately wetting substrate (polymethylmethacrylate; PMMA). We found that time to maximum shear adhesion recovery did not differ in the walking groups based on substrate wettability (22.7±5.1 min on glass and 15.4±0.3 min on PMMA) but did have a significant effect in the non-walking groups (54.3±3.9 min on glass and 27.8±2.5 min on PMMA). Overall, we found that by actively walking, geckos were able to self-dry their wet toe pads and regain maximum shear adhesion significantly faster than those that did not walk. Our results highlight a unexpected property of the gecko adhesive system, the ability to actively self-dry and recover adhesive performance after being rendered dysfunctional by water.  相似文献   

14.
Geckos are well known for their extraordinary clinging abilities and many species easily scale vertical or even inverted surfaces. This ability is enabled by a complex digital adhesive mechanism (adhesive toepads) that employs van der Waals based adhesion, augmented by frictional forces. Numerous morphological traits and behaviors have evolved to facilitate deployment of the adhesive mechanism, maximize adhesive force and enable release from the substrate. The complex digital morphologies that result allow geckos to interact with their environment in a novel fashion quite differently from most other lizards. Details of toepad morphology suggest multiple gains and losses of the adhesive mechanism, but lack of a comprehensive phylogeny has hindered efforts to determine how frequently adhesive toepads have been gained and lost. Here we present a multigene phylogeny of geckos, including 107 of 118 recognized genera, and determine that adhesive toepads have been gained and lost multiple times, and remarkably, with approximately equal frequency. The most likely hypothesis suggests that adhesive toepads evolved 11 times and were lost nine times. The overall external morphology of the toepad is strikingly similar in many lineages in which it is independently derived, but lineage-specific differences are evident, particularly regarding internal anatomy, with unique morphological patterns defining each independent derivation.  相似文献   

15.
<正> Synthetic dry adhesives inspired by the nano-and micro-scale hairs found on the feet of geckos and some spiders have beendeveloped for almost a decade. Elastomeric single level micro-scale mushroom shaped fibres are currently able to function evenbetter than natural dry adhesives on smooth surfaces under normal loading. However, the adhesion of these single level syntheticdry adhesives on rough surfaces is still not optimal because of the reduced contact surface area. In nature, contact area ismaximized by hierarchically structuring different scales of fibres capable of conforming surface roughness. In this paper, weadapt the nature's solution arid propose a novel dual-level hierarchical adhesive design using Polydimethylsiloxane (PDMS),which is tested under peel loading at different orientations. A negative macro-scale mold is manufactured by using a laser cutterto define holes in a Poly(methyl methacrylate) (PMMA) plate. After casting PDMS macro-scale fibres by using the obtainedPMMA mold, a previously prepared micro-fibre adhesive is bonded to the macro-scale fibre substrate. Once the bondingpolymer is cured, the micro-fibre adhesive is cut to form macro scale mushroom caps. Each macro-fibre of the resulting hierarchicaladhesive is able to conform to loads applied in different directions. The dual-level structure enhances the peel strengthon smooth surfaces compared to a single-level dry adhesive, but also weakens the shear strength of the adhesive for a given areain contact. The adhesive appears to be very performance sensitive to the specific size of the fibre tips, and experiments indicatethat designing hierarchical structures is not as simple as placing multiple scales of fibres on top of one another, but can requiresignificant design optimization to enhance the contact mechanics and adhesion strength.  相似文献   

16.
We published a phylogenetic comparative analysis that found geckos had gained and lost adhesive toepads multiple times over their long evolutionary history (Gamble et al., PLoS One, 7, 2012, e39429). This was consistent with decades of morphological studies showing geckos had evolved adhesive toepads on multiple occasions and that the morphology of geckos with ancestrally padless digits can be distinguished from secondarily padless forms. Recently, Harrington & Reeder (J. Evol. Biol., 30, 2017, 313) reanalysed data from Gamble et al. (PLoS One, 7, 2012, e39429) and found little support for the multiple origins hypothesis. Here, we argue that Harrington and Reeder failed to take morphological evidence into account when devising ancestral state reconstruction models and that these biologically unrealistic models led to erroneous conclusions about the evolution of adhesive toepads in geckos.  相似文献   

17.
Understanding the challenges faced by organisms moving within their environment is essential to comprehending the evolution of locomotor morphology and habitat use. Geckos have developed adhesive toe pads that enable exploitation of a wide range of microhabitats. These toe pads, and their adhesive mechanisms, have typically been studied using a range of artificial substrates, usually significantly smoother than those available in nature. Although these studies have been fundamental in understanding the mechanisms of attachment in geckos, it is unclear whether gecko attachment simply gradually declines with increased roughness as some researchers have suggested, or whether the interaction between the gekkotan adhesive system and surface roughness produces nonlinear relationships. To understand ecological challenges faced in their natural habitats, it is essential to use test surfaces that are more like surfaces used by geckos in nature. We tested gecko shear force (i.e., frictional force) generation as a measure of clinging performance on three artificial substrates. We selected substrates that exhibit microtopographies with peak‐to‐valley heights similar to those of substrates used in nature, to investigate performance on a range of smooth surfaces (glass), and fine‐grained (fine sandpaper) to rough (coarse sandpaper). We found that shear force did not decline monotonically with roughness, but varied nonlinearly among substrates. Clinging performance was greater on glass and coarse sandpaper than on fine sandpaper, and clinging performance was not significantly different between glass and coarse sandpaper. Our results demonstrate that performance on different substrates varies, probably depending on the underlying mechanisms of the adhesive apparatus in geckos.  相似文献   

18.
The biological attachment device on the tarsal appendage of the earwig, Timomenus komarovi (Insecta: Dermaptera: Forficulidae) was investigated using field emission scanning electron microscopy to reveal the fine structural characteristics of its biological attachment devices to move on smooth and rough surfaces. They attach to rough substrates using their pretarsal claws; however, attachment to smooth surfaces is achieved by means of two groups of hairy tarsal pads. This biological attachment device consists of fine hairy setae with various contact sizes. Three different groups of tenent setae were distinguished depending on the cuticular substructure of the endplates. Two groups of setae commonly had flattened surfaces, and they were covered with either spoon‐shaped or spatula‐shaped endplates, respectively. While the flattened tip setae were distributed at the central region, the pointed tip setae were characteristically found along the marginal region. There were no obvious gender‐specific differences between fibrillar adhesive pads in this insect mainly because the forceps‐like pincers are used during copulation to grasp the partner.  相似文献   

19.
Geckos employ their adhesive system when moving up an incline, but the directionality of the system may limit function on downhill surfaces. Here, we use a generalist gecko to test whether limb modulation occurs on downhill slopes to allow geckos to take advantage of their adhesive system. We examined three-dimensional limb kinematics for geckos moving up and down a 45° slope. Remarkably, the hind limbs were rotated posteriorly on declines, resulting in digit III of the pes facing a more posterior direction (opposite to the direction of travel). No significant changes in limb orientation were found in any other condition. This pes rotation leads to a dramatic shift in foot function that facilitates the use of the adhesive system as a brake/stabilizer during downhill locomotion and, although this rotation is not unique to geckos, it is significant for the deployment of adhesion. Adhesion is not just advantageous for uphill locomotion but can be employed to help deal with the effects of gravity during downhill locomotion, highlighting the incredible multi-functionality of this key innovation.  相似文献   

20.
Based on analyses with cryo‐scanning and transmission electron microscopy, the present study reports on the morphology and ultrastructure of the attachment structures of the green stinkbug Nezara viridula L. (Heteroptera: Pentatomidae), a cosmopolitan pest of different crops in most areas of the world. In addition, the presence and distribution of large proportions of the elastic protein resilin in these structures was revealed by confocal laser scanning microscopy. The attachment structures of each leg comprise two sclerotised claws, a pair of smooth flexible pulvilli and a hairy adhesive pad located at the ventral side of the basitarsus. No sexual dimorphism is evident. Contact areas of resting individuals on a smooth surface show that N. viridula creates contact to the substrate with the ventral surface of (a) the distal portions of the pulvilli, (b) the setae of the hairy adhesive pad, (c) the two paraempodia representing mechanosensory setae, and (d) the tips of the claws. Each pulvillus is a sac‐like structure formed by complex cuticular layers that vary in their structure and resilin content. The dorsal side consists of sclerotised chitinous material, while the ventral cuticle consists mainly of resilin and shows a very thin epicuticle and a thick exocuticle. The setae of the hairy adhesive pad are pointed and socketed. They exhibit a pronounced longitudinal gradient in the material composition, with large proportions of resilin being present in the setal tips. In most of these setae, especially in those of the distal‐most part of the pad, also a transverse gradient in the material composition is visible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号